Tag Archives: CCRES ALGAE PROJECT

2015年の総市場規模は16億ドルを超える見通し

CCRES ALGAE TEAM
㈱グローバル インフォメーションは、米国の市場調査会社SBI Energy (aka Specialist In Business Information)が発行した報告書「藻類バイオ燃料技術:世界市場および製品動向(2010年~2015年)」の販売を開始しました。

2005年から2007年までの藻類バイオ燃料産業への企業の参入は、原油の高値および環境上の懸念から拍車がかかり、550%と記録的に跳ね上がりました。しかしそれ以来、原油価格は下落し、先頃の金融危機が多くの産業の障害となっています。同レポートによれば、「藻類バイオ燃料への関心は現在も維持されています。しかし同時に、産業は期待の先走りに苦しめられてもいます。」と報告されています。藻類によるバイオ燃料製造技術の現在の市場は、相当量の開発活動と規模を縮小した試験で構成されています。今後はデモンストレーションと商業利用が進められ、藻類によるバイオ燃料製造の各種新技術が2015年には総市場の3分の1を占めるに至るでしょう。

なぜ 藻類なのか?

藻類は原料油としての使用が可能です。つまり、藻類はバイオディーゼル、再生可能ディーゼル、再生可能ジェット燃料、藻油、航空用バイオ燃料、バイオガソリン、エタノール、バイオメタン、ブタノール、水素など、実に多くのバイオ燃料の製造用に加工が可能ということであり、これはすばらしいメリットです。また、藻類によるバイオ燃料製造は、ケイソウ類・ラン藻類・緑ソウ類の遺伝子組み換え、養殖用オープンポンドまたは光バイオリアクター、燃料処理用リファイナリー・ダイジェスター・ファーメンター、抽出用プレスおよび遠心分離機といった幅広い技術を必要とします。

藻類バイオ燃料の製造技術市場の今後の展望とは?

藻類バイオ燃料の製造技術市場は、養殖技術の売上が大半を占めると予測されています。残りの市場は採取、抽出、燃料製造設備の区分が占める見通しですが、これらは2015年には、合計で16億ドルを超える市場規模に成長すると予測されています。同レポートによれば、「2010年には推計2億7,100万ドルとされる同市場のこの成長は飛躍的なもので、約43%との年間成長率の予測もあわせ、この数値は同産業が急速に変化を遂げ、進化する産業であることを明確に示すものです」と報告されています。

市場調査レポート: 藻類バイオ燃料技術:世界市場および製品動向(2010年~2015年)Algae Biofuels Technologies – Global Market and Product Trends 2010-2015

Tagged , , , , , , , , , , , ,

International Algae Congress 2012

International Algae Congress 2012

   
  Croatian Center of Renewable Energy Sources (CCRES) proudly presents 6th International Algae Congress


The 6th International Algae Congress which will take place on December 4 & 5 2012 in Rotterdam in the Netherlands.

Among confirmed speakers:
– Mr. V. (Vítor) Verdelho, Board Member and Chief Development Officer, Algafuel P
– Mr. A. (Andreas) Weber, Algae Biotech SL E
– Prof. dr. B. (Birgit) Kamm, Honorary Professor Biorefinery Technology, FI Biopos e.V. and BTU Cottbus D
– Dr. J. (Jose) Olivares, Executive Director, NAABB USA
– Dr. H. (Hans) Kleivdal, Research Leader, Centre for Applied Biotechnology, Uni Research AS N
– Mr. J. (John) Benemann, CEO, MicroBio Engineering, Inc USA
Dr. J. (Joachim) Grill, CEO, See Algae Technology, D
– Dr. M. (Magali) Siaut, PhD, Greenstars Program FR– Mr. P. (Phillippe) Tramoy, Managing Partner of the company CBDM.T – Market & Business Intelligence FR
– Prof. S. (Sammy) Boussiba, director of the French Associates Institute for Agriculture & Biotechnology of Dryland at the Jacob
Blaustein Institutes for Desert Research at Ben Gurion University ISRAEL– Mr. R. (René) Draaisma, Unilever R&D Vlaardingen Research NL
– Dr. M.A. (Monique) Schoondorp, Managing Partner, Algaecom and professor new business development Hanze University of Applied Sciences, Groningen
– Dr. Z. (Zsuzsanna) Libor, Cranfield University UK
– Dr. C. (Cees) Sagt, Principal Scientist Strain Development, DSM Biotechnology Center, DSM Food Specialties B.V NL
– Prof. R. (Rene) Wijffels, Wageningen University NL– Mr. P. (Pieter) Boelens, COO Evodos NL– Mr. D. (Doug) DiLillo, Pall Energy Group Industrial BioTechnology Lead BioBased Fuels & Chemicals Markets USA– Dr. M. (Monika) Solanki, Birmingham City University GB– Dr. J. (Jennifer) Champenois, Centre d’Etude et de Valorisation des Algues (CEVA)FR– Dr. C. (Chris) de Visser, Wageningen UR NL
– Dr. R. (Rommie) van der Weide, Acrres NL


Please scroll down for more information.

6th International Algae Congress 2012 at a glanceFollowing the success of the previous five international algae congresses, the organisers are pleased to announce the sixth International Algae Congress. The sixth International Algae Congress takes place at the floating pavilion in Rotterdam The Netherlands, on 4 & 5 December next.

It is organised by DLG BENELUX from the Netherlands.
Address Floating pavilion; Tillemakade 99, 3072 AX Rotterdam, The Netherlands.


Facts & figures 5th International Algae Congress Berlin, 2011:
Over 120 algae stakeholders
+30 countries (European ánd Overseas )
26 speakers, CEO’s, professors from all over the world
+10 poster presentations, exhibitors
Senior Life Time Achievement Award Ceremony

Register to:– Meet the international algae elite
– Examine new developments
– Recognize key opportunities for your business
– Maximize your position in the global algae market

                    

Programme and SessionsUpdates on the programme and the speakers are still made, so please keep an eye on this page, or sign up for our e-newsletter.

Sessions address the following themes:

Session 1: Future European Algae Biomass; forecast, regulations and investment opportunities – Forecast
– Regulations
– Investment opportunities

Session 2: Commercial Algae Production, new views & concepts from laboratory and field– Reduction of energy input
– Efficiënt use of sunlight
– Nutrient recycle
– Scale up
– LCA’s/ Design scenarios
– Innovative photobioreactors

Session 3: EU & Global projects
– Reports on FP7 and global projects

Session 4: Strain Selection &  Genetic Engineering
– Latest developments
– Innovative technologies

Session 5: Biofuel production & Biorefinery
– Promising Technologies
– Innovative business models that lead to the implementation of Biorefinery

Session 6: Upscaling and Commercialisation
– Market analysis studies
– Market potential and time lines
Session 7: Markets & Closing

Registration fees excl VAT– Congress delegate €895 incl conference dinner
– Congress delegate 1 day €450
– Student ( * copy student card required ) €299
– Poster presentation €100 ( excl congress sessions )
– Stand €495
– Abstract book & presentations €250

You will meet delegates from various sectors from the algae industry, including scientists, aquaculture, algae producers, waste managers, water treatment, end-users (food, feed, aquaculture, pharma), VC PE and other investors, consultants, energy companies, equipment, technology & infrastructure and government agencies.

Please click here for testimonials from delegates and speakers.

Algae Information MarketAn excellent platform where companies and scientists can demonstrate their products and/or services by means of a stand or a poster presentation. The information market will be located in the foyer surrounding the congress room. This foyer is used for the registration of participants, coffee breaks and lunches as well. You will have sufficient time for networking with participants during these coffee breaks and lunches.

Please click here for an overview of the partipants and the possibilities.

                                   

The International Algae Congress is the opportunity to;• Position your brand and business
• Get direct and exclusive access to a group of targeted decision makers and
investors
• Create new partnerships and alliances
• Share knowledge and know-how with your target group
• Benefit from unrivalled lead generation and profiling at this event

                                   

Team will be happy to answer your questions, please contact;

DLG BENELUX
Project manager
Christie de Vrij
E: christie.devrij@dlg-benelux.com
+31 (0)348 – 484 002

Tagged , , , , , , ,

BIOGORIVO TREĆE GENERACIJE

Bazeni za uzgoj algi

Proizvodnja biogoriva iz algi

Ovisnost svijeta o neobnovljivim izvorima energije, uglavnom fosilnim gorivima, trn je u oku mnogih znanstvenika i aktivista za zaštitu okoliša diljem svijeta. Samim time ne iznenađuju globalna nastojanja da se smanji ovisnost o fosilnim gorivima i pronađu ekonomski prihvatljiva alternativna goriva i da se time znatno smanje emisije štetnog ugljičnog dioksida u atmosferu. Jedna od alternativa o kojoj se najviše priča su biogoriva. Biogoriva su zbog svoje sličnosti s naftnim derivatima poprilično dobra alternativa fosilnim gorivima i korištenje biogoriva rezultira s manjim emisijama CO2 u atmosferu. Zbog toga su biogoriva ekološki puno prihvatljivija od konkurentskih fosilnih goriva. Manje ukupne emisije ugljičnog dioksida iz biogoriva rezultat su zatvorenog ugljičnog kruga – biljke i alge uzimaju iz atmosfere ugljični dioksid da bi mogle rasti, a kad se biogoriva upotrebljavaju taj isti ugljični dioksid se vraća natrag u atmosferu. Ugljični otisak fosilnih goriva ide u samo jednom smjeru – iz zemlje u atmosferu, tj.u niti jednom koraku proizvodnje i korištenja fosilnih goriva ne smanjuje se količina CO2 u atmosferi.

Alge u laboratoriju Hrvatskog Centara Obnovljivih Izvora Energije (HCOIE)
Biogorivo može biti čvrsto, tekuće ili čak plinovito gorivo koje je proizvedeno iz biološkog materijala. Kod organizama koji obavljaju fotosintezu, kao na primjer kukuruz ili soja, biljke koriste energiju sunca i vodu da bi pretvorile dostupni ugljični dioksid u ugljikohidrate, tj. da bi pohranile energiju. Ovakav proces je zapravo dvostruko koristan: ne samo da je proizvedeno gorivo, nego je za to potrošena određena količina ugljičnog dioksida pa ovakva proizvodnja goriva ima pozitivni učinak i s energetske i s ekološke točke gledanja. Iako se biogoriva mogu proizvoditi od bilo kakvih izvora ugljika, danas se uglavnom koriste razne vrste ratarskih biljaka diljem svijeta. Postoji mala razlika između različitih biljaka u smislu goriva koje se od njih proizvodi. Na primjer etanol se proizvodi od biljaka koje sadrže puno šećera (šećerna trska, kukuruz), a za proizvodnju biodizela koriste se biljke koje sadrže više ulja (soja, kanola, uljana repica).
Biogoriva imaju mnoge prednosti, ali postoje i nedostaci. Uzgajanje biljaka za proizvodnju biogoriva zahtjeva kvalitetna poljoprivredna zemljišta a to naravno povećava potražnju za takvim zemljištima i diže cijenu. Najveći problem s biogorivima je zapravo činjenica da je proizvodnja biogoriva pretvaranje hrane u gorivo, a to loše utječe i na cijenu i na dostupnost hrane diljem svijeta, a već sad postoji gotovo milijarda ljudi koji žive na rubu gladi. Prema tome pretvaranje hrane u gorivo ne izgleda kao logičan izbor za rješavanje energetskih problema.
Prednosti korištenja algi za proizvodnju biogoriva 
Proizvodnja biogoriva iz algi ima mnoge prednosti koje taj postupak čine gotovo savršenim izvorom goriva. Alge rastu 50 do 100 puta brže od tradicionalnih kultura za proizvodnju biogoriva. Dodatna velika prednost je to što su alge jednostanični organizmi koji ne zahtijevaju svježu pitku i zemljište da bi rasli, a to znatno pojednostavnjuje proizvodnju. Prema nekim stručnjacima proizvodnja goriva iz algi je najbolja alternativa fosilnim gorivima i uz dobru podršku ta bi biogoriva u budućnosti mogla u potpunosti izbaciti fosilna goriva iz upotrebe.
Gdje se mogu uzgajati alge?
 Alge se mogu uzgajati u odvojenim vodenim površinama, čak iako voda nije dovoljno kvalitetna za piće. Alge se također mogu uzgajati i u slanoj vodi. Uzgajajući alge na površinama koje nisu pogodne za proizvodnju hrane, više zemljišta i kvalitetne vode ostaje za proizvodnju hrane. Veća količina proizvedene hrane može se onda upotrijebiti za borbu protiv gladi, a ne za proizvodnju biogoriva kao do sada. Odemo li tridesetak godina unatrag, ili da smo precizniji u 1978 godinu, možemo primijetiti da je čak i američko ministarstvo za energiju (Department of Energy – DOE) pokrenulo „Aquatic Species Program“ s ciljem istraživanja moguće proizvodnje energije i biogoriva iz algi. Prema tome, proizvodnja biogoriva iz algi nije nova ideja kao što misli većina ljudi. Usprkos dobroj ideji, ovo istraživanje nije bilo produktivno, uglavnom zbog padajućih cijena sirove nafte i činjenice da je DOE bilo prisiljeno smanjivati troškove. Sve ovo rezultiralo je gašenjem programa 1996 godine.
Usprkos gašenju, istraživanja unutar tog programa dala su vrlo važne rezultate, a najvažnije od svega je zaključak da bi proizvodnja biogoriva iz algi svakako mogla dostići željene razine. U ono doba studije su pokazale i jedan veliki nedostatak: zaključeno je da postupak ne bi bio financijski opravdan sve i da se cijena sirove nafte udvostruči. Ovaj zaključak imao je solidnu potporu sve do 2006 godine u kojoj se cijena nafte gotovo utrostručila u odnosu na prošlu dekadu, a cijena nafte je i dalje rasla. Uz trenutne probleme globalnog zatopljenja i visoke cijene sirove nafte stvorile su se idealne prilike za ponovnu evaluaciju ovog izvora energije.
Tehnologije za uzgoj algi (Algal Growth System)
 
Prozvodnja biogoriva u Hrvatskom Centru Obnovljivih Izvora Energije (HCOIE)
Proizvodnja biogoriva iz algi vrlo je zanimljivo područje istraživanja mnogim znanstvenicima diljem planeta, ja jedan on vodećih centara za takova istraživanja je laboratorij za pogone i konverziju energije (The Engines and Energy Conversion Laboratory – EECL) na sveučilištu Colorado State University. Ovaj laboratorij usmjeren je prema tehnologijama koje bi omogućile industrijska rješenja za energetske i ekološke izazove. Glavni projekt laboratorija fokusiran je na proizvodnju biogoriva iz algi i trebao bi rezultirati skalabilnom i cjenovno prihvatljivom tehnologijom za proizvodnju goriva. Jedan od glavnih igrača na tom polju svakako je tvrtka Solix Biofuels, kompanija koje je usavršila nekoliko generacija sustava za uzgoj algi (Algal Growth System – AGS), tehnologije koja je sad operativna na pokaznom polju Coyote Gulch u jugozapadnom Coloradu.
Tvrtka Solix Biofuels je vodeća u proizvodnju tehnologija za kreiranje iskoristive energije iz algi. Njihova tehnologija usmjerena je na omogućavanje velike komercijalizacije goriva temeljenih na mikroalgama i dodatnih koprodukata. Alge se mogu uzgajati na dva osnovna načina – sustav otvorenog bazena (prirodnog ili umjetno napravljenog) ili umjetni zatvoreni sustav. Alge moraju biti vrlo otporne na nametnike za uzgoj u otvorenim sustavima jer su to uvjeti koje nije lako kontrolirati.
Bez kontroliranih uvjeta teško je održavati rast željene vrste algi, odnosno održati rast na optimalnoj razini za proizvodnju biogoriva. Ovo je glavni razlog zašto Solix Biofuels uglavnom razvija zatvorene sustave za uzgoj algi. Zatvoreni sustavi imaju nekoliko prednosti: ne samo da zatvoreni sustavi omogućavaju uzgoj određene kulture, nego se alge u tim sustavima mogu direktno hraniti visoko koncentriranim ugljičnim dioksidom iz industrijskih procesa, a to naravno maksimizira količinu „ulovljenog“ ugljičnog dioksida koji bi inače bio ispušten u atmosferu. Prvi prototip AGS sustava napravljen je 2006 godine. Od onda kompanija radi na usavršavanju tehnologije i znatno je proširila površinu na kojima uzgaja alge. Posljednji veliki uspjeh dolazi iz srpnja 2009 kad su instalirali veliki sustav za proizvodnju biogoriva na pokaznom polju Coyote Gulch.
Što su zapravo postigli? 
Započeli su s velikim izazovom: prvo je trebalo razviti procese za skupljanje podataka i kontroliranje rasta ta automatizirani AGS. Željeli su jedinstvenu tehnološku platformu koja bi podržavala i prirodne i industrijske operacije. U prirodnim uvjetima sustav treba biti prilagodljiv pa je bilo potrebno mnogo kemijskih i fizičkih senzora te kontrola protoka. Za operacije u industrijskom okruženju glavni je naglasak bio na stabilnoj, pouzdanoj i jednostavnoj platformi koja ima sučelja prema industrijskoj instrumentaciji i kontrolama. Industrijska okruženja također moraju imati sustave skupljanja podataka u zajednički repozitorij da bi se informacije mogle jedinstveno prezentirati svim zainteresiranim stranama: menadžerima, operativi i odjelu za istraživanja i razvoj. Zbog toga je kreiran cijeli sustav za nadzor i skupljanje podataka (Supervisory Control and Data Acquisition) uključujući i sučelje za monitoriranje i kontrolu rasta algi.
Pokusna energana uključuje raznovrsne sustave izgrađene za proizvodnju plina i tokova vode, sam sustav za uzgoj algi, sustave za skupljanje algi i konačno sustave za proizvodnju biogoriva. Svi ovi sustavi omogućuju im vrlo precizno skupljanje podataka i ispitivanje odaziva različitih vrsta algi na različite uvjete uzgoja.
Zaključak 
Alge u procesu HCOIE
Biogoriva temeljena na algama definitivno imaju potencijala pokrenuti revoluciju u energetskoj industriji i mogla bi igrati vodeću ulogu u borbi protiv stakleničkih plinova i klimatskih promjena. Naravno, da bi se došlo do toga morat će se pokrenuti još mnoga istraživanja i biti će potrebna znatna financijska sredstva. Kompanije poput Solix Biofuels su pioniri koji bi mogli pogurati ovaj energetski sektor u jedan od najkompetitivnijih na energetskom tržištu. Lobiji iza fosilnih goriva su još uvijek prejaki, ali s rastućim problemom globalnih klimatskih promjena ti lobiji bi uskoro mogli u određenoj mjeri oslabiti, čime bi se širom otvorila vrata alternativnim gorivima. Jedna od alternativa koja svakako zaslužuje pažnju u godinama koje dolaze su biogoriva iz algi. Njihov energetski potencijal, činjenica da ne pretvaramo hranu u gorivo i znatno smanjene ukupne emisije stakleničkih plinova trebali bi im osigurati dovoljna financijska sredstva za daljnja istraživanja.
Potražnja za energijom neće se smanjivati u godinama koje dolaze nego će rasti i biti će potrebna alternativna goriva bez obzira koliko će dominantna ostati fosilna goriva. Proizvodnja biogoriva iz algi mogla bi biti jedna od iznenađujućih takmaca na polju alternativnih goriva u ne tako dalekoj budućnosti, osobito ako cijene fosilnih goriva budu rasle. A u međuvremenu bi kompanije i udruženja poput američke Solix Biofuels ili hrvatskog HCOIE trebale nastaviti svoja istraživanja i ukazivati na prednosti koje ovakav proces ima. Ovime bi se svijest o toj alternativi znatno proširila i implementacija proizvodnje na globalnoj razini postala bi moguća kad za to dođe vrijeme.
Hrvatski Centar Obnovljivih Izvora Energije (HCOIE)
Tagged , , , , , , , , , , , , , , , , , , , ,

CCRES Low Carbon Fuels in Aviation

 photo by CCRES

 

Biofuels are key to industry’s future

 In a bid to reduce its dependency on imported oil and tackle global warming, the EU has committed to raising the share of fuels from renewable sources in transport to 10% by 2020 – including biofuels, hydrogen and green electricity.
For the growing aviation industry, the switch to plant-based fuel is seen as not only environmentally smart, but a sensible financial move in an era or rising conventional fuel prices and worries about supply security.
Biofuel use in passenger aircraft is still a novelty, and industry officials are urging governments to help lift supplies, much as policies in the EU and United States have created a flourishing market in plant-based oils for motor vehicles.
The industry contends that sustainable fuels will reduce emissions even as passenger traffic grows. The airline sector has committed to meet 10% of its overall fuel consumption with biofuels by 2017 – though the goal is ambitious given that it is to account for just 1% by 2015…
Meanwhile, more doubts are being raised about the environmental benefits of biofuels.
The United Nations Environment Programme has warned that even though burning plant-based fuels can produce significantly lower levels of carbon emissions, production and land clearing to make way for new crops “may reduce carbon-savings or even lead to an increase.”
European conservation groups say the EU and European governments should wait to embrace aviation biofuels until there is proof of their environmental benefits.
 ”Given the right conditions, algae can double its volume overnight. Microalgae are the earth’s most productive plants –– 10 to 15 times more prolific in biomass than the fastest growing land plant exploited for biofuel production. While soy produces some 50 gallons of oil per acre per year; canola, 150 gallons; and palm, 650 gallons, algae can produce up to 15,000 gallons per acre per year. In addition, up to 50 percent (or more) of algae biomass (dry weight) is comprised of oil, whereas oil-palm trees—currently the most efficient large-scale source of feedstock oil to make biofuels—yield approximately 20 percent of their weight in oil,” says Zeljko Serdar, President of CCRES
 Airlines have committed to ramping up their use of biofuels in the belief that they can contribute to achieving the sector’s pledges on carbon-neutral growth. For 2050, the EU foresees 40% use of “sustainable low carbon fuels” in aviation.
Croatian Center of Renewable Energy Sources (CCRES)
Tagged , , , , , , , , , , , , , ,

CCRES Algae Project Q&A

 

 CCRES ALGAE
CCRES Algae Project
Q&A

See answers to common questions about growing algae for biofuel production.

Algae’s potential
What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?
What transportation fuels can algae produce?
How much fuel can algae produce?
Where could this type of algae grow?
What can you do with material derived from algae production not used for fuel?

Economics
How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?
What can accelerate the commercial availability of algae biofuel?

Environment
How will algae-based transportation fuels impact greenhouse gas emissions?
Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

Security
Can algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

CCRES ALGAE
Q: What makes algae a better alternative fuel feedstock than cellulosic feedstocks, such as switchgrass or miscanthus?

A: Large-scale production of resource-intensive plants, like switchgrass or miscanthus, requires a substantial amount of fertile land, fresh water, and petroleum-based fertilizer to grow. The fuel derived is ethanol, a lower-energy fuel not compatible with the infrastructure now used to transport, refine, and deliver liquid fuels, like gasoline and diesel.

Conversely, algae can produce hydrocarbons capable of being converted directly into actual gasoline or diesel fuel, which can be transported and delivered to market using the existing refinery infrastructure.

Q: What transportation fuels can algae produce?
A: Algae produce a variety of fuel and fuel precursor molecules, including triglycerides and fatty acids that can be converted to biodiesel, as well as lipids and isoprenoids that can be directly converted to actual gasoline and traditional diesel fuel. Algae can also be used to produce hydrogen or biomass, which can then be digested into methane.

Q: How much fuel can algae produce?

A: The United States consumes 140 billion gallons per year of liquid fuel. Algae can produce 3,000 gallons of liquid fuel per acre in a year, so it would take 45 million acres of algae to provide 100% of our liquid fuel requirements.

For comparison, in 2008 the United States had 90 million acres of corn and 67 million acres of soybeans in production. So growing 45 million acres of algae, while challenging, is certainly possible.

Q: Where could this type of algae grow?

A: Algae perform best under consistent warm temperatures between 20 and 30 degrees. Climates with plenty of sunshine offer optimal conditions. Ideal Croatian locations include many of the southern and southwestern areas, such as Dalmatia,(including Dalmatian hinterland ).

CCRES ALGAE
Q: What can you do with material derived from algae production not used for fuel?

A: Production of 140 billion gallons of fuel from algae would also yield about 1 trillion pounds of protein. Since algae-produced protein is very high quality, this protein could be used to feed livestock, chicken, or fish. Presently, all livestock in this country consume about 770 billion pounds of protein per year.

Q: How much would a gallon of algae-based transportation fuel cost if it were available at a service station today?

A: Today, the cost would be relatively expensive. Additional investment in research is needed to further refine and enhance the algae strains that generate such fuels. Also, more infrastructure needs to be developed to achieve the necessary economies of scale that will come with large-scale commercial production. Once overall efficiency increases, the cost of producing a gallon of gasoline from algae will dramatically reduce.

Q: What can accelerate the commercial availability of algae biofuel?

A: As viable and potentially transformational as algae-based transportation fuels have already proven, we need a much better knowledge base on algae at the microbial level. We also need to build on this platform to develop the tools and train the next generation of scientists that will help usher in the age of accessible, affordable, and sustainable fuels made from algae. That is a central component of the Croatian Center for Algae Biofuels (CCRES Algae Project).

CCRES ALGAE
Q: How will algae-based transportation fuels impact greenhouse gas emissions?

A: Production of alternative transportation fuels from algae will help reduce the amount of CO2 in the environment. Algae provide a carbon-neutral fuel because they consume more CO2 than is ultimately released into the atmosphere when algae-based fuel burns. The amount of carbon removed from the environment will depend on the number of algae farms built and the efficiency with which algae can be modified to convert CO2 to fuel products. Eventually, algae farms will likely be located adjacent to CO2 producing facilities, like power plants, resulting in potentially significant CO2 sequestration benefits.

Q: Is the process capable of being replicated at the local level to increase energy efficiency and promote low-energy overhead?

A: Absolutely. There are huge advantages to locating algae farms near urban centers. The algae consume industrial waste and contaminants, which are usually found in higher concentrations near cities. A perfect location is near a power plant, where the algae can consume flue gas and other waste, or near a wastewater treatment plant where the algae could consume significant amounts of nitrates and phosphates from the waste stream. This could result in cleaner effluent discharge, and perhaps eventually create “new” sources of non-potable water for industrial or agricultural use.

Q: Could algae-based fuels be used in developing countries to help them bypass fossil fuel dependence?

A: Algae-based fuels (and the protein byproducts derived from their production) definitely have the potential to positively impact developing countries. The requirements for farming algae are fairly straightforward and can be done almost anywhere in the world with an adequate supply of sunshine. In Africa, for example, millions of algae acres could be farmed in its less-populated regions, resulting in a reduced dependence on foreign oil and a reliable and sustainable energy supply.

 
CCRES ALGAE PROJECT
part of
Croatian Center of Renewable Energy Sources (CCRES)
Tagged , , , , , , , , , , , , , ,

CCRES Algae Astaxanthin

 

CCRES Algae Astaxanthin
 
Astaxanthin’s ability to scavenge free radicals in your body* is up to…

    550 times more powerful than vitamin E
    65 times more powerful than vitamin C
    54 times more powerful than beta-carotene
    5 times more powerful than lutein

 
CCRES ALGAE
It does this by quenching a molecule called singlet oxygen – a harmful reactive oxygen species formed through normal biological processes occurring in your body.* Singlet oxygen possesses a high amount of excess energy that must be released to keep it from damaging other cells.
 
 
CCRES Lab
Astaxanthin absorbs this energy and dissipates it as heat, thereby returning the singlet oxygen to a grounded state.*

There’s another way, too, that astaxanthin helps to protect cells, organs and tissues against oxidative damage from free radicals.*

 
CCRES Algae Astaxanthin
It traps free radicals at both ends of the molecule.* Once captured, the potentially harmful free radicals pass into cellular fluids where they become neutralized by vitamin C. In this way, astaxanthin is sometimes considered a ‘booster’ for other antioxidants like vitamins A, C and E.*

What’s more, astaxanthin can’t act as a potentially detrimental “pro-oxidant” like some of the other carotenoids such as beta-carotene, lycopene, and zeaxanthin.

 
 
CCRES CO2

    Support your joint health, flexibility, and mobility*
    Support a healthy immune response*
    Support your central nervous system*
    Support your cardiovascular system*
    Support your brain and eye health due to its unique ability to cross blood-brain and blood-retina barriers*

 
CCRES ALGAE PROJECT
part of 
Croatian Center of Renewable Energy Sources (CCRES)
Tagged , ,

Biodiesel Experts in EU

Growing global demand for energy to power economic development and growth demands the development of cost-effective technologies for a more sustainable energy economy for Europe (and world-wide) to ensure that European industry can compete successfully on the global stage.
Energy is a vital part of our daily lives in Europe and has been for centuries. But the days of secure, cheap energy are over. We are already facing the consequences of climate change, increasing import dependence and higher energy prices.
Consequently, the EU has been developing its climate and energy policy as an integrated approach that pursues the three key objectives of:
  • security of supply: to better coordinate the EU’s supply of and demand for energy within an international context;
  • competitiveness: to ensure the competitiveness of European economies and the availability of affordable energy;
  • sustainability: to combat climate change by promoting renewable energy sources and energy efficiency.
Click to enlarge EU primary energy requirements by fuel Source: European Energy and Transport, Trends to 2030 
Click to enlarge Import dependency of the EU (in %) Source: European Energy and Transport, Trends to 2030 
These objectives have been translated into binding targets. By 2020, the EU has committed itself to:
  • reducing its greenhouse-gas emissions by 20% (or even 30% in case an international agreement is reached that commits other countries in a similar way);
  • increasing the share of renewable energies to 20% of total EU energy consumption;
  • increasing the share of renewable energies in transport to 10%;
  • improving energy efficiency by 20%.
Achieving these goals will require major breakthroughs in the research and development of new technologies. The European Strategic Energy Technology Plan (SET-Plan) – the technology pillar of the European energy and climate policy – outlines long-term energy research priorities for the horizon of 2020 to 2050. It lays the foundations for a European policy for energy technology and establishes a framework that brings together the diverse activities in the field of energy research. For more information please visit the SET-Plan section of this website.

Biodiesel Experts in EU

NOVAOL AUSTRIA GmbH Industriegelande West 3
A-2460 Bruck/Leitha

OLEON Assenedestraat 2
9940 Ertvelde
Bioro Moervaartkaai 1
B-9042 Gent
NEOCHIM Parc Industriel, zone A
7181 Feluy
Proviron Fine Chemicals nv G.Gilliotstraat 60 – zone 2
B-2620 Hemiksem
FEDIOL 168, avenue de Tervuren
(bte 12) – 1st floor
B – 1150 – Bruxelles

Rapid Oil Industry Co. Ltd. 81A, Nikola Gabrovski st.
5000 Veliko Tarnovo

Agropodnik Dobronin 315
588 13 Polna
Preol
PREOL a.s. Lovosice,
Terezinska 47
PSC 41017

Ambrosia Oils (1976) LTD Larnaka Industrial Estate,
P.O.Box 40433, 6304 Larnaka

Daka Biodiesel Bragesvej 18
DK 4100 Ringsted

Neste Renewable Fuels Oy P.O. Box 726
00095 NESTE OIL

DIESTER INDUSTRIE 12 Avenue Georges V
75008 Paris
INEOS Enterprises France SAS Z.I. Baleycourt – BP 10095
F – 55103 VERDUN Cedex
SCA Pétrole et Dérivés 7, Allée des Mousquetaires
Parc de Tréville
91078 Bondoufle Cedex
France Ester
France Ester Route d’Alençon
61400 Saint Langis les Mortagne
Nord Ester Rue Van Cauwenberghe
Zone Industrielle de Petite-Synthe
59640 Dunkerque
Veolia / SARP Industries SARP Industries
427, route du Hazay
F-78520 Limay
Centre Ouest Céreales B.P. 10036
86131 Jaunay-clan Cedex

ADM HAMBURG AG
Nippoldstrasse. 117
D-21107 Hamburg
ADM HAMBURG AG – Werk Leer
GmbH & Co. KG
Saegemuehlenstrasse. 45
D-26789 Leer (Ostfriesland)
ADM Soya Mainz GmbH Dammweg 2
55130 Mainz
CARGILL GmbH
Ruedeckenstrasse 51 / Am Hafen
D-38239 Salzgitter-Beddingen
VERBIO Diesel Bitterfeld GmbH & Co. KG
Areal B Chemiepark Bitterfeld-Wolfen, OT Greppin, Stickstoffstrasse
D-6749 Bitterfeld-Wolfen
NATURAL ENERGY WEST GmbH
Industrie Strasse 34
41460 Neuss
PETROTEC GmbH
Fürst-von-Salm-Straße 18
46313 Borken-Burlo
BIOPETROL Industries AG Baarerstrasse 53/55,
CH-6304 Zug
EcoMotion GmbH Brunnenstr. 138
D-44536 Lünen
Mannheim Bio Fuel GmbH Inselstrasse 10
D-68169 Mannheim
Vesta Biofuels Brunsbüttel GmbH
Fahrstrasse 51
D-25541 Brunsbuttel
Rheinische Bio Ester GmbH & Co. KG Duisburger Strasse 15/19
41460 Neuss
VERBAND DEUTSCHER BIODIESELHERSTELLER e.V.
Am Weidendamm 1a
D-10117 Berlin

ELIN BIOFUELS S.A.
33 Pigon Str., 145 64 Kifissia
Athens
AGROINVEST S.A. 9th km Thessaloniki-Thermi
Thermi II Building
57001 Thessaloniki
GF Energy 56 Kifisias Av. & Delfon st.,
6th floor, 151 25 Marousi,
Athens

Öko-line Hungary Kft. Városligeti fasor 47-49
H-1071 Budapest

Green Biofuels Ireland Ltd Wexford Farmers Co-op
Blackstoops, Enniscorthy Co. Wexford

ECO FOX S.r.L. Via Senigallia 29
I=61100 Pesaro
NOVAOL ITALY Via G: Spqdolini 5
20141 Milano
ITAL BI OIL S.r.l. Ital Bi Oil S.r.l.
Via Baione 222 – 224
70043 – Monopoli (BA)
OIL. B srl OIL.B srl
Via Sabotino, 2
24121 Bergamo
OXEM Strada Provinciale Km 2,6 – 27030
Mezzana Bigli (Pv)
Mythen Via Lanzone ,31
20123 MILANO
PFP S.p.A Via Scaglia Est 134
41126 Modena
Assocostieri
Unione Produttori Biodiesel
Via di Vigna Murata 40
00143 Roma

BioVenta 66 Dzintaru
Ventspils, LV-3600

Biovalue Holding BV Westlob 6
NL-9979XG Eemshaven

Croatian Center of RES Medarska 24
10000 Zagreb

IBEROL NUTASA Av. Frei Miguel Contreiras, 54A – 3º
1700-213 Lisboa
Torrejana
Torrejana Casal da Amendoeira
Apartado 2
2354-908 Riachos
Sovena Oil Seeds Portugal R. General Ferreira Martins 6, 8º
Miraflores
1495-137 Algés
APPB

Prio Strada Stelea Spatarul
nr 12, Sector 3, Bucuresti
Expur 45 Tudor Vladimirescu Bvd. District 5
050881 Bucharest
Procera Biofuels Muncii street, No.11 Fundulea city
Calarasi County, 915200

BIONET EUROPA Poligon Agro-Reus
Adria Gual 4
43206 Reus
ACCIONA Biocombustibles, S.A Av. Ciudad de la Innovación, 5
31621 Sarriguren (Navarra)
Biocombustiblies Ctra. de Valencia Km. 202
Pol. Sepes – Parcelas 145-146
16004 Cuenca
Green Fuel Avda. San Francisco Javier, 24, Ed. Sevilla I
41018 Sevilla
Stocks del Valles
Stocks Del Valles SA Pol. Ind. El Pedregar
C/. Progres, 19-21
E-08160 Montmelo Barcelona
Bio-Oils Energy, S.L. C/ Almagro 2, 4º Dcha.
28010 Madrid
BioArag Ctra A- 1240, Km 0,900 – 22540
Altorricon (Huesca)
BioNorte S.A. Poligono de la Florida 71
33958 San Martin Del Rey Aurelio
Asturias
APPA Muntaner 269
08021 Barcelona

Ecobränsle i Karlshamn AB Västra Kajen 8B
SE-374 31 Karlshamn
Norups Biorefinery AB Box 109
289 21 Knislinge
Perstorp Prastgatan 12
SE-252 24 Helsingborg

Argent Energy 5th Floor, 9 Hatton Street
London NW8 8PL
Harvest Energy 2 Cavendish Square
London, W1G 0PU
Agri Energy Northampton Road, Blisworth
Northampton, NN7 3DR

Expert Groups 

alt Prof Thierry CHOPIN University of New Brunswick Canada
alt Dr Alan CRITCHLEY Acadian Seaplants Ltd Canada
alt Dr Amir NEORI
Dr. Ami BEN AMOTZ
Israel Oceanographic & Limnological
Research Ltd
Israel
Mr John TRAVERS
(Chief executive Ireland)
Alternative energy Resources Limited LTD
(biofuels production and supply company)
Ireland
Prof Klaus LUNING Sylt Algae Farm Germany
altalt Prof Masahiro NOTOYA Tokyo University Marine Science and
Technology International Seaweed Association
Japan
alt Dr Paolo GUALTIERI CNR- Istituto di Biofisica di Pisa Italy
alt Ms Simonetta ZARRILLI United Nations Conference on Trade and
Development (UNCTAD)
Switzerland
alt Ms Sofia SEQUEIRA Galp Portugal
alt Mr Jeff TSCHIRLEY UN Food and Agricoltural Organisation
(FAO)
Italy
alt Mr Michael. B. LAKEMAN
Mr Andrew BRAFF
Algal Biomass Organisation USA
alt Mr Frédéric MONOT Institute Français du Petrol, Biotechnology
and Biomass Chemistry
France
alt Mr. Guido DEJONGH CEN – European Committee for Standardisation
(New Standardization Opportunities)
Belgium

Experts

Prof. Spiros AGATHOS Louvain University
Belgium
Ms. Maria BARBOSA WURFood & BioBased
The Netherlands
Dr. Kateřina BIŠOVÁ Czech Institute of Microbiology
Czech Republic
Mr. Jonas DAHL Danish Technological Institute
Denmark
Dr. Maeve EDWARDS Irish Seaweed Centre
Ireland
Mr. Cameron EDWARDS VESTA Biofuels Brunsbüttel
Germany
Prof. Jose FERNANDEZ SEVILLA University of Almeria
Spain
Dr. Imogen FOUBERT K.U.Leuven University
Belgium
Dr. Gloria GAUPMANN EBIO
Belgium
Dr. Sridharan GOVINDACHARY Queen’s University
Ireland
Prof. Patricia J. HARVEY University of Greenwich
UK
Mr. Sven JACOBS Howest
Belgium
Mr. Frédéric LAEUFFER TOTAL
France
Mr. Remy MARCHAL Institut Français du Pétrole
France
Mr. Riccardo MARCHETTI Oxem S.p.a
Italy
Dr. Laura MARTINELLI Studio Martinelli
Italy
Ms. Roberta MODOLO Studio Martinelli
Italy
Mr. Benoit QUEGUINEUR Irish Seaweed Centre
Ireland
Ms. Jessica RATCLIFF Irish Seaweed Centre
Ireland
Mr. Jean-François ROUS Diester Industrie
France
Ms. Briana SAPP PANGEA
Belgium
Mr. Philippe SCHILD European Commission (DR Research)
Belgium
Mr. Johannes SKARKA Karlsruher Institute of Technology
Germany
Ms. Andrea SONNLEITNER Bioenergy 2020
Austria
Mr. Julien TAIEB FEFAC
Belgium
Prof. Laurenz THOMSEN Jacobs University Bremen
Germany
Dr. Wolfgang TRUNK European Commission (DG Health)
Belgium
Mr. Dries VANDAMME K.U.Leuven University
Belgium
Mr. Peter VAN DEN DORPEL AlgaeLink N.V.
The Netherlands
Mr. Jan VANHOUTTE BEKO
Belgium
Dr. Koen VANHOUTTE Navicula
Belgium
Mr. Ignacio VASQUEZ- L European Commission (DG Climate)
Belgium
Dr. Milada VITOVÁ Czech Institute of Microbiology
Czech Republic
Ms. Annalisa VOLSE PANGEA
Belgium
Dr. Wim VYVERMAN Ghent University
Belgium
Ms. Annika WEISS KIT
Germany
Mr. Zeljko Serdar Croatian Center of RES
Croatia

Prof. Gabriel ACIEN FERNANDEZ Almeria University
Spain
Dr. Dina BACOVSKY Bioenergy 2020+ GmbH
Austria
Dr. Natascia BIONDI University of Florence
Italy
Prof. Sammy BOUSSIBA Ben‐Gurion University
Israel
Mr. Marco BROCKEN Evodos The Netherlands
Ms. Griet CASTELEYN Ghent University Belgium
Mr. Nuno COELHO AlgaFuel Portugal
Dr. Guillermo GARCIA-B.REINA University of Las Palmas Gan Canaria Spain
Mr. Guido DE JONGH CEN Belgium
Mr. Alessandro FLAMMINI FAO Aquatic Biofuels Italy
Mr. Clayton JEFFRYES Louvain University Belgium
Dr. Bert LEMMENS VITO Belgium
Dr. Stefan LEU Ben‐Gurion University Israel
Mr. Philippe MORAND CNRS France
Mr. Josche MUTH EREC Belgium
Ms. Liliana RODOLFI Fotosintetica & Microbiologica S.r.l Italy
Dr. Robin SHIELDS Swansea University UK
Dr. Raphael SLADE Imperial College London UK
Mr. Mario R. TREDICI University of Florence Italy
Ms. Sofie VAN DEN HENDE Ghent University Belgium
Mr. Ron VAN ERCK European Commission(DG Energy) Belgium
Prof. Rene WIJFFELS Wageningen Universiteit The Netherlands
Mr. Philippe WILLEMS Orineo BVBA Belgium
Dr. Attila WOOTSCH MFKK Hungary Hungary
Tagged , , , , , , , , , , , , , , , , , , , , , , , ,

CCRES – ALGAE BIOFUELS AND AQUAPONICS

 

CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)
 
Algae, the Source of Biofuels, and Aquaponics
Algae can be used as important types of biomass materials from which the biofuels can be obtained. Algae absorb the energy from the sun in the presence of carbon dioxide and store it. A number of processes can be carried out on algae to convert it into biofuels like alcohol, biodiesel and even biogas. The biodiesel obtained from algae can be mixed with petroleum diesel and it can be used for running of trucks, cars and many types of engines that use diesel. Biodiesel can also be used as the fuel in the jets, airplanes, refineries and pipelines. The biomass obtained from algae can be used as the renewable sources of energy since it is available in abundant quantities and will be available for unlimited period of time.
One of the important advantages of algae is that it can grow in any type of water like salt, fresh, and even contaminated water. It can be grown in vast sea and river water, small rain water ponds and even commercial or domestic manmade made ponds. Algae has the potential to yield 30 times more energy than the crops grown on land, which are currently being used to produce the biofuels. This could encourage the use of algae for producing biofuels instead of the land that can be used for producing food crops. The harvesting cycle of algae is 1 to 10 days, which permits several harvests in short period of time and using the resources more effectively.

Algae and Aquaponics
As described earlier, algae can be grown in any type of water and in type of water storage system. Besides the naturally occurring seas, rivers, and ponds, it can also grow in manmade ponds. The manmade ponds can be at homes for domestic purpose or in large lands made for commercial production of algae. For the better growth of algae some nutrients may be added to water. Besides using these ponds for algae growth they can also be used for the growth of fishes and other aquatic animals.
Aquaponics is the system where one can grow the fishes and plants like algae in one integrated system. The waste given by the fishes act as important nutrients for the plants, while the cover of plants provides the natural filter for the fishes in the living areas. Aquaponics is the combination of words aquaculture and hydroponics. Aquaculture is the cultivation of fish or other water based animals, while hydroponics is the growth of plants in water. In aquaponics one can grow the water animals as well the plants at the same time. Thus the manmade small or big pond can be effectively used for growing fishes as well plants like algae.
The plants usually prefer warm-water so the water in aquaponics is also warm. The fishes grown in aquaponics are of warm-water type and not of cold-water type. The fishes grown in aquaponics can be consumed by the owner, they can be given to the friend, can be sold in the market to earn money or they can be kept as the pets. The harvesting period of fishes ranges from 7 to 9 months. When aquaponics is combined with a controlled environment greenhouse, high quality crops can be grown throughout the year and in any part of the world.
Aquaponics comprises of the water tank where the fishes are raised and fed. There is a chamber, where the uneaten foods and other particles and solids are collected. The bio-filter converts ammonia into nitrates, which act as the nutrients for the plants. There is also a portion for the growth of the plants. The lowest part of tank is a sump from where fresh water is supplied to the tank and old water is removed.
The concept of aquaponics can be extended for the growth of algae. Instead of the plants, one can grow algae, which has the harvest cycle of one to ten days. At the same time the fishes can also be grown. In the period of about nine months, while the fishes will harvest once, algae will be harvested several times. The large quantities of algae collected this way can be used as the biomass for producing the biofuels like biodiesel.
The advantages of using aquaponics for the growth of algae is that in a single place harvesting of both, the algae as well as fishes can be done. This would increase the profitability for the owner if they already have aquaculture or hydroponics. While earlier they would get only a single product from the infrastructure, they could now get two products. Since harvesting time of algae is short, it would keep the owner busy and this could become a continuous source of income for them.
The major limitations of aquaponics are the high initial costs required for housing, tank, plumbing, pumps and bedding. One should also do thorough research for the chances of success of such project. The system also has number of points of failure and requires intensive maintenance.
CCRES 
special thanks to   
Escapeartist, Inc
 CROATIAN CENTER of RENEWABLE ENERGY SOURCES 
(CCRES)
Tagged , , , , , , , , , , , , , , , , , , , , , ,

The CCRES Algae Production Module

 

CCRES Algae
The CCRES Algae Production Module will begin with an overview of photosynthesis and the carbon cycle, the taxonomy of algae and the basics of cell biology.
Safety in the lab, OSHA compliance and the process of experimental methodology are also included in the curriculum. Students will learn about algae growth factors such as temperature, light, CO2and nutrients.
 The different kinds of photobioreactor designs will be explored, including closed vs. open systems.  Students will learn about the importance of cultivation protocols, and when to feed, harvest and how to process the algae.
 Analytics will be covered as well which includes the use of the microscope and learning about the basic algae handling and testing procedures such as dilution, cell counting and dry weight measurment.
The various uses of algae will be examined such as its role in the nutraceutical, food, cosmetic and animal feed industries and as a replacement for petroleum as a transportation fuel.
CCRES ALGAE PROJECT
part of 
CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)
Tagged , , , , , , , , , , , , , , ,

CCRES ALGAE PROJECT

 

 

 
 
 
CCRES ALGAE PROJECT
 
Algae is uniquely suited to serve as the foundation for a new generation, the next industrial age of renewable and low carbon transportation fuels. It addresses and solves many of the pressing issues of our time, from climate change, to energy security, to jobs. It sets an infrastructure that will require fewer compromises and more reliance on ourselves to feed our own energy consumption needs.

Algae is one of nature′s most prolific and efficient photosynthetic plants; in fact, it is the source of the earth′s crude oil when algae bloomed millions of years ago. Nearly all of algae′s energy is concentrated in the chloroplast—the engine that turns sunlight and CO2 into organic carbon, resulting in oils easily refined into gasoline, diesel, and jet fuel. Further, algae has a short growing cycle and does not require arable land or potable water. Algae′s number one nutrient source is CO2, consuming 13 to 14 kg of C02 per gallon of green crude. Algae can be grown quickly in salt water in the desert.

 
The process for making algae into fuel at a very base level is this: Sunlight and CO2 are the source of energy and carbon dioxide, rather than sugar or other organic material. By applying the principals used in biotechnology, CCRES can produce oil in algae that is highly branched and undecorated – the way that traditional crude is – to get a biological crude molecularly similar to light sweet crude. This Green crude can be than processed at a refinery just as traditional crude to make all three major distillates – gasoline, diesel, and jet fuel.
 
Algae are the most efficient photosynthetic plants on the planet as no energy goes into making roots, stems, seeds, or flowers. More energy (roughly 6-50 times more) is produced per acre, per year, with algae versus other feedstocks.
 
CCRES ALGAE PROJECT
part of 

Croatian Center of Renewable Energy Sources (CCRES)

Tagged