Tag Archives: BIOFILTER


 Sources of Alternative Energy
Alternative energy or renewable energy is important for creating clean energy future not only for the individual nations but the whole world. It offers excellent alternatives to the fossil fuels to reduce the emissions of carbon dioxide and greenhouse gases. The sources of the alternative energy are inexhaustible and one can rely on them for long-term basis Here are some important sources of alternative energy:
1) Solar energy:
The energy obtained from the radiations of the sun is called as solar energy. Sun is the massive source of energy releasing radiations since billions of years non-stop. The radiations emitted by sun are vital for all the plant, animal and human lives on the earth. At present solar energy is being tapped successfully for a number of applications.

Solar cooker is small box type equipment used for cooking of the food without requiring any additional fuel. There are number of variations of solar cooker with different efficiencies and different sizes. Solar water heaters are used extensively for heating water that can be used for bathing, domestic use and industrial purposes. It saves lots of electricity costs and the burning of other fuels like wood, coal, LPG etc. Another very important application of the solar energy is the photovoltaic or PV cells. The PV cells comprise of the solar panels that absorb solar energy and store them in the batteries. The energy from the batteries can be used for different domestic as well industrial applications
Besides these, there are number of other applications of solar energy like solar street lights, solar lanterns, calculators, mobiles etc. Solar energy is available abundantly in countries like India, China, US and others. It is considered to be one of the most resourceful sources of energy for future.

2) Wind energy:
The energy obtained from naturally flowing wind in the atmosphere is called as wind energy. Wind energy is available extensively in specific geographical locations without any costs. The wind in motion carries kinetic energy and it can be converted into mechanical and electrical energy. Presently wind energy is widely used for the generation of electricity.
To tap the energy from wind turbines are used. The wind turbine comprises of large blades looking like the fan. The blades are attached to the hub, which in turn is mounted on a shaft When the moving wind comes in contact with the blades it causes the rotation of the blades, which in turn causes the rotation of the shaft at low speeds. This shaft is connected to the gear box and causes slow rotation of the input gears and fast rotation of output gears and shaft. The output shaft rotates in an alternator that produces electricity. To get sufficient amount of grid power, large number of wind turbines are required at a specific location, which is called as wind farm or wind power plant.

3) Hydropower:
The power obtained from the flow of water is called as hydraulic power or hydro power or water power. The alternative energy from water can be obtained in a number of ways, the most popular being the hydroelectric power plants. In these power plants huge dams are built across the flow of the river. The water is stored in the dam at large heights and it carries potential energy. When the water flows down the potential energy is converted into kinetic energy. The flowing water comes in contacts with the large water turbines and makes them rotate in the transformer that produces electricity. Hydroelectric power plants are important source of electricity in a number of countries including US, China, India, Russia, and others.
Alternative energy obtained from the tides of the oceans is called as tidal energy. The waves in the waters of the oceans can also be utilized to produce electricity.

4) Geothermal Energy:
The heat energy obtained from the deep layers of earth is called as geothermal energy. The heat is produced continuously in the deep layers of earth, which can be utilized for various purposes like heating water, operating the heat pumps, producing electricity etc. Large amount of heat is generated in the core of earth and it gets conducted through the surrounding layers of rock. It comes to the surface of the earth in various forms like lava, hot springs etc, while other heat is stored below the surface of the earth. This heat is the geothermal energy and is available in unlimited quantity.

5) Biomass energy:
Biomass is the organic material obtained from the plants. The plants absorb energy from the sun by the process of photosynthesis so the energy is store in them. The biomass is the garbage leftover by the plants in the form of fallen leaves, broken branches, dead trees, wood chips, wasted crops etc. A number of other garbage and waste materials can be considered to be biomass. The energy obtained from the biomass is called as the biomass energy.
When the biomass is heated, the chemical energy within it is converted into heat energy, which can be used for heating water, producing steam, cooking food etc. Biomass can also be used to produce the methane gas, which can be used as the fuel. Rotten garbage and human waste can also be considered as biomass that can be used to produce methane, which is called as landfill gas or biogas. Biomass can also be converted biodiesel, which can be mixed with the traditional diesel fuel to run the vehicles.
special thanks to   
Escapeartist, Inc
Tagged , , , , , , , , , , , , , ,


Alternative Energy
Energy has become integral parts of our day-to-day lives. Energy is required to produce electricity for domestic and industrial applications. We need energy to drive our vehicles, to run the machines, keep our houses cool and hot, run the computers and mobiles, and for a number of other purposes.
Comparison of Traditional and Alternative Energy Sources:
Traditionally we have been using fossil fuels for production of electric power and driving our vehicles. The fuels used for the generation of electric power are fossil fuels like coal and oil, and nuclear fuels like uranium. The fuels used commonly for running the vehicles are crude oils like gasoline and diesel. Alternative energy refers to the energy that is not dependent on fossil fuels, crude oil and nuclear fuels. Alternative energy, also called as renewable energy, is obtained from various sources like radiations of the sun (solar energy), wind, water, geothermal heat and tides in the oceans. Burning of fossil fuels is one of the major causes of environmental pollution and greenhouse effect. They release lots of carbon dioxide and particulate matter. The alternative or renewable energy is considered to be the clean energy since extracting energy from its sources does not produce any pollution.
The sources of energy like fossil fuels, crude oil and nuclear fuels are also called as non-renewable sources of energy since their deposits are reducing in the nature as they are being used extensively throughout the world. Fuels like coal, natural gas and oil took millions of years to develop but once used they cannot be replaced immediately. The alternative energy on the other hand is available in abundance from various sources and they get replaced easily immediately or within short period of time.
Alternative sources of energy provide unending supply of energy. For instance the solar energy from the sun will be available for unlimited period of time till the sun keeps shining. Solar energy can be collected by the collectors and it can be used for a number of applications like cooking food, heating water, generating electricity, running the vehicles etc. Similarly, the wind will keep on blowing on the surface of the earth tills its atmosphere is in place so it can be utilized for unlimited period of time. The ability of the wind to produce motion can be utilized to run the fans of the windmill and produce electricity from them.
The tidal energy is obtained from waves of the oceans having huge quantity of water that would last forever. One of the important sources of alternative energy is hydro-power used for the generation of electricity in hydroelectric power plants. Throughout the world, the hydroelectric power plants are one of the major sources for the generation of electricity. In these plants the flow of river is blocked at certain places and water is allowed to be collected at large height in the dam. The rivers have been flowing since thousands of years and continue to exist for unlimited period of time as they are replenished by rain water from time-to-time.
Geothermal energy is obtained from the lower layers of the earth usually for producing the heating effect. Once the energy is obtained from the earth, it is replaced immediately naturally and it can be used for ending period of time interval.
Another important source of alternative energy is the biomass like waste wood, leaves of the plants, broken branches and twigs of the trees, agricultural wastes, garbage, human wastes etc. The fuels obtained from biomass are called bio-fuels. Some of the common bio-fuels are ethanol, biodiesel, and natural gas. Biodiesel is a type of alternative fuel used for running of the vehicles. It is made from renewable energy sources like plant and animal fats. Biodiesel is not a petroleum fuel, but it can be easily blended with petroleum fuel diesel in various proportions.
All the above alternative sources of energy are expected to last for long intervals of time line. While the supply of coal, oil and natural gas is expected to reduce and stop in the future, the supply of energy from sources like sun, wind, water, earth, and biomass is expected to last forever.
Consumption of alternative energy in US has been increasing over the years. In the year 2009 the consumption of alternative energy in US was 7.7 quadrillion Btu, which was 8% of all the energy used in the whole nation. Half of the alternative energy was used for producing electricity, while 10% of the total electricity produced was from alternative energy sources. Besides this alternative energy sources were also used for production of heat and steam. Alternative energy was also used for transportation, and to provide heat for homes and businesses.
Alternative energy sources reduce the pressure on fossil fuels and also help keep environment clean. The only major problem is that alternative energy is expensive compared to the fossil fuels mainly because they are located in remote places and its difficult to bring them to the main grid. Some of the sources like wind and solar are not uniform during various periods of the day and the year. However, their demand has been increasing and various technologies are being developed to utilize alternative energy sources more efficiently.
special thanks to   
Escapeartist, Inc
Tagged , , , , , , , , , , , , , , , ,

Human growth hormone (HGH) from algae



Rehovot, Israel-based Rosetta Green Ltd., which specializes in crop improvement for the agriculture and alternative fuel industries using unique genes called microRNAs, has successfully completed an experiment producing human growth hormone (HGH) and validated its biological activity. Proteins produced by both treated and control algae were tested with an in vitro activity test assay by an independent third party using the conventional proliferation method. The activity test assay found that Rosetta Green’s treated algae exhibited hormonal activity.

The project is part of a joint European effort to manufacture chemicals and proteins in algae, which is implemented and funded by the European Union as part of the European Commission’s Seventh Framework Program for Research and Technology Development (FP7). More than ten European organizations are participating in this project, including companies and leading universities, which has an estimated budget of about $7 million US. The project is being managed by Professor Sammy Boussiba of the Microalgal Biotechnology Laboratory of Ben Gurion University of the Negev.
Rosetta Green focuses on using microalgae to develop and produce human proteins for therapeutics, a process that reduces the currently steep drug production costs associated with using mostly mammalian cells and bacteria.

According to Amir Avniel, Rosetta Green’s CEO, “Algae may be an effective source for the production of proteins and vaccines. Rosetta Green has vast experience working with molecular methods in algae. The company worked on the development of designated algae in order to produce the protein in cooperation with the EU. Algae can be used for multiple applications such as producing chemicals, industrial food supplements, bio fuel and food. We believe that the technology that we develop provides significant advantage to improve various traits in plants and algae. We continually seek partners to develop our products and technologies.”

Growth hormone is a peptide hormone secreted by the pituitary gland. Among its functions are the regulation of protein production and the stimulation of bone growth in children. Growth hormone is normally secreted throughout a person’s life, but the amount decreases by 14% every decade after the age of 21. A deficiency in this hormone is known to cause growth block, short stature and dwarfism.

Currently, growth hormone is produced by major multi-nationals such as Pfizer, Lilly, and Merck Serono and used as a prescription medicine to treat children with growth problems and adults with hormone deficiency as well as other symptoms characterized by growth complications. Total annual sales of human growth hormone are estimated at approximately $3 Billion US.

Growth hormone is administered today primarily through daily injections over several years. The accumulated cost can reach hundreds of thousands of dollars per child. Rosetta Green believes that manufacturing the hormone using microalgae will likely reduce today’s high cost of production, which relies upon currently available techniques.

More info at http://www.rosettagreen.com/.

CCRES special thanks to Professor Sammy Boussiba of the Microalgal Biotechnology Laboratory of Ben Gurion University of the Negev.



part of

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , , , , , , , , ,

Biomass-Based Fuel Supplements

The Department of Energy (DOE) has announced up to $15 million available to demonstrate biomass-based oil supplements that can be blended with petroleum, helping the United States to reduce foreign oil use, diversify the nation’s energy portfolio, and create jobs for American workers.
Known as “bio-oils,” these precursors for fully renewable transportation fuels could be integrated into the oil refining processes that make conventional gasoline, diesel, and jet fuels without requiring modifications to existing fuel distribution networks or engines.
The Department expects to fully fund between five to ten projects in fiscal year 2012 to produce bio-oil prototypes that can be tested in oil refineries and used to develop comprehensive technical and economic analyses of how bio-oils could work. The proto-type bio-oils will be produced from a range of feedstocks that could include algae, corn and wheat stovers, dedicated energy crops or wood residues.
 Domestic industry, universities, and laboratories are all eligible to apply.
The results of the projects will inform future efforts directed at advancing bio-oil technologies and bringing these renewable fuels to market. A description of the funding opportunity, eligibility requirements, and application instructions can be found on the Funding Opportunity Exchange website under Reference Number DE-FOA-0000686.
The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) accelerates development and facilitates deployment of energy efficiency and renewable energy technologies and market-based solutions that strengthen U.S. energy security, environmental quality, and economic vitality. Learn more about EERE’s work with industry, academia, and National Laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies.
project of 
Tagged , , , , , , , , , , , , , , , , ,

Using algae for reducing the CO2



Algae live on a high concentration of carbon dioxide and nitrogen dioxide.  These pollutants are released by automobiles, cement plants, breweries, fertilizer plants, steel plants. These pollutants can serve as nutrients for the algae.


When fuels are burned there remains, besides ash, a certain number of gas components. If these still contain combustion heat, they are called heating gases. As soon as they have conveyed their energy to the absorbing surfaces of a heat exchanger, they are called flue or stack gases.

It further contains a small percentage of pollutants such as particulate matter, carbon monoxide, nitrogen oxides and sulfur oxides.

Carbon dioxide (CO2)

—the primary greenhouse gas responsible for global warming—along with other pollutants.
Its composition depends on what is being burned, but it usually consists of mostly nitrogen (typically more than two-thirds) derived from the combustion air, carbon dioxide (CO2) and water vapor as well as excess oxygen (also derived from the combustion air).

Using algae for reducing the CO2 concentration in the atmosphere is known as algae-based Carbon Capture technology. The algae production facilities can thus be fed with the exhaust gases from these plants to significantly increase the algal productivity and clean up the air.  An additional benefit from this technology is that the oil found in algae can be processed into a biodiesel. Remaining components of the algae can be used to make other products, including Ethanol and livestock feed.

This technology offers a safe and sustainable solution to the problems associated with global warming.


project of

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , , , , , , , , , ,

Cultivation of Algae

Cultivation of microalgae can be done in open systems (lakes, ponds) and in controlled closed systems called photo-bioreactors (PBR).

Open cultivation systems use ponds or lakes with added mechanical equipment to grow microalgae. Open ponds were the first cultivation technology for mass cultivation of microalgae. In this system water levels are kept no less than 15 cm, and algae are cultured under conditions identical to their natural environment. The pond is designed in a raceway configuration, in which a paddlewheel circulates and mixes the algal cells and nutrients.

Open cultivation system for growing algae

The raceways are typically made from poured concrete or they are simply dug into the earth and lined with a plastic liner to prevent the ground from soaking up the liquid. Baffles in the channel guide the flow around the bends in order to minimize space. The system is often operated in a continuous mode, where the fresh feed (containing nutrients including nitrogen phosphorus and inorganic salts) is added in front of the paddlewheel, and algal broth is harvested behind the paddlewheel after it has circulated through the loop. Depending on the nutrients required by algal species, several sources of wastewater can be used for algal culture. For some marine-type microalgae, seawater or water with high salinity can be used.

Raceway ponds growing algae

Although open ponds cost less to build and operate than closed systems using PBRs, this culture system has its disadvantages. The ponds can be built on any type of land but need large land areas for considerable biomass yield. Because they are in the open air, the water levels are affected from evaporation and rainfall. Natural CO2 levels in the atmosphere (0.03%-0.06%) are not enough for continuous mass growth of microalgae. Biomass productivity is also limited by contamination with unwanted algal species, organisms that feed on algae or other poisonous particles. Only few species can be grown in normal conditions.
Other types of construction use: 1) circular ponds where circulation is provided by rotating arms; 2) inclined systems where mixing is achieved through pumping and gravity flow.

Closed cultivation systems use PBRs – containers made of transparent materials for optimised light exposure. Enclosed PBRs have been employed to overcome the contamination and evaporation problems encountered in open systems. These systems are generally placed outdoors for illumination by natural light. The cultivation vessels have a large surface area-to-volume ratio. The most widely used PBR is a tubular design, which has a number of clear transparent tubes, usually aligned with the sun’s rays. The tubes are generally less than 10 centimeters in diameter to maximize sunlight penetration. The medium broth is circulated through a pump to the tubes, where it is exposed to light for photosynthesis, and then back to a reservoir. A portion of the algae is usually harvested after it passes through the solar collection tubes, making continuous algal culture possible.

In some PBRs, the tubes are coiled spirals to form what is known as a helical-tubular PBR. These systems sometimes require artificial light for energy, which adds to production costs.  Either a mechanical pump or an airlift pump maintain a highly turbulent flow within the reactor, which prevents the algal biomass from settling. The photosynthesis process generates oxygen. In an open raceway system, this is not a problem as the oxygen is simply returned to the atmosphere. In closed PBRS, the oxygen levels will build up until they inhibit and poison the algae. The culture must periodically be returned to a degassing zone—an area where the algal broth is bubbled with air to remove the excess oxygen. Also, the algae use CO2, which can cause carbon starvation and an increase in pH. Therefore, CO2 must be fed into the system in order to successfully cultivate the microalgae on a large scale.
PBRs require cooling during daylight hours, and the temperature must be regulated at night as well. This may be done through heat exchangers located either in the tubes themselves or in the degassing column.
The advantages of enclosed PBRs are obvious. They can overcome the problems of contamination and evaporation encountered in open systems. The biomass productivity of PBRs can average 16 times more than that of a traditional raceway pond. Harvest of biomass from PBRs is less expensive than from raceway ponds, because the typical algal biomass is about 30 times as concentrated as the biomass found in raceways. Controlled conditions in closed systems are suitable for genetic modification of algae cells and enable cultivation of better quality species (e.g. microalgae with higher oil content).
However, closed systems also have disadvantages. Technological challenges with PBRs are: overheating, bio-fouling, oxygen accumulation, difficulty in scaling up, cell damage by shear stress & deterioration and expensive building & maintenance. Light limitation cannot be entirely overcome because light penetration is inversely proportional to the cell concentration. Attachment of cells to the tubes’ walls may also prevent light penetration. Although enclosed systems can enhance biomass concentration, the growth of microalgae is still suboptimal due to variations in temperature and light intensity.
R&D in algae biotechnologies focus on developing innovative PBR designs and materials. Different developed designs are: serpentine, manifold, helical and flat containers. From these elevated reactors can be oriented and tilted at different angles and can use diffuse and reflected (artificial) light for growth. More specific information is available in PBRs section.
After growing in open ponds or PBRs, the microalgae biomass needs to be harvested for further processing. The commonly used harvest method is through gravity settlement or centrifuge. The oil from the biomass is extracted through solvent and further processed into biodiesel.

Tagged , , , , , , , , , , , , , , , ,

Algae Production Workshop




Algae Production Workshop

 in NJ

The National Algae Association (NAA) has announced that they will be presenting a Commercial Algae Production Technologies and Networking Workshop, May 1, 2012, at the Crowne Plaza Fairfield Hotel in Fairfield, New Jersey. The event will include a tour of Glenn Mills to view a commercial-scale algae extraction facility.

The focus of the Workshop will be on progress in commercial growing, harvesting and extraction methods, as well as proven technologies that are ready for commercial-scale algae production. NAA is inviting industry professionals to submit proposed presentations no later than April 10, 2012 for consideration. Membership in NAA is not required to present at or attend this event.

For additional information, please contact:

National Algae Association




project of

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , , , , , , , ,



predstavlja Vam
Više informacija o Projektu CCRES AQUAPONICS na :
Za sve dodatne informacije slobodno nas kontaktirajte.
All the food CCRES produced during the year we give to poor families.
Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,



 We are committed to overcoming the world’s impending economic and environmental constraints with technology that produces sustainable, affordable, and local bio-based products from algae.

Algae hold great promise in the near term to fundamentally change America’s energy portfolio, sequester or convert atmospheric CO2 into market-ready products, and help grow our economy through the creation of tens of thousands of well-paying green-collar jobs. Algae-based jobs include:

Based on a survey conducted by the Algal Biomass Organization in January of 2010 with 52 reporting companies, a likely estimation of job growth is shown in the chart below as Scenario 1. In addition, based on the same survey, with the addition of regulatory and legislative parity in the US, accelerated job growth could occur as estimated Scenario 2.

Algae-based products and processes:

  • Can replace a significant percentage of America’s petroleum-based liquid transportation fuel, including jet fuel, gasoline and diesel, using photosynthetic and non-photosynthetic processes;
  • Are domestically produced and renewable;
  • Consume enormous amounts of CO2, and biologically sequester or beneficially reuse/convert atmospheric and industrial CO2into marketable products;
  • Can be grown in non-potable water, on non-agricultural land (thereby avoiding indirect land use issues).
  • Will be commercially produced in the near-term; low-carbon, drop-in transportation fuels will be produced by CCRES members within two years.
  • Can provide value-added co-products, including nutraceuticals, animal feed, cosmetics, plastics and other bio-based products, while also creating renewable, sustainable fuels.

World Ticker

World Population Estimate
03/30/2012 12:40 UTC

25% of fish are overexploited.
50% fully exploited.
Cubic feet since 1750 AD

2007? 2025? Never?
Many experts say it’s here.
Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

10 Tips Nutrition Education Series

Ten Tips Education Series

The Ten Tips Nutrition Education Series provides consumers and professionals with high quality, easy-to-follow tips in a convenient, printable format. These are perfect for posting on a refrigerator.

These tips and ideas are a starting point. You will find a wealth of suggestions here that can help you get started toward a healthy diet. Choose a change that you can make today, and move toward a healthier you. These tips are also available in Spanish.

More tips coming soon!


Croatian Center of Renewable Energy Sources  (CCRES)

special thanks to  

The Center for Nutrition Policy and Promotion, an organization of the U.S. Department of Agriculture

Tagged , , , , , , , , , , , , , ,