Category Archives: The Effects of Astaxanthin

Palmaria Palmata Fights Ebola

 
 

P A L M A R I A   P A L M A T A

is a cold water algae species that is found in the middle to lower shore in many parts of Europe and the North Atlantic Coasts of America. It can grow in depths of up to 20m on both exposed and sheltered shores. It is found growing on rocks and on the stipes of L. hyperborea and Fucus serratus as an epiphyte.

Palmaria palmata can be eaten raw, roasted, fried, dried, or roasted, or as a thickening agent for soups.

 
CONSTITUENT
Alpha-carotene, beta-carotene, calcium, chromium, cobalt, iodine, iron, lutein, manganese, magnesium, niacin, phosphorous, potassium, riboflavin, selenium, silicon, sodium, tin, vitamin C, zeaxanthin, and zinc.

PARTS USES
The entire plant, dried and cut.

TYPICAL PREPARATIONS
Added to food in the form of dried flakes or powder for a slightly salty flavor, can be drunk as a tea. Also suitable as an extract or capsule.

SUMMARY
Palmaria palmata is an excellent source of phytochemicals and minerals, and a superior source of iodine.
 
PRECAUTIONS
Don’t overdue, and avoid it entirely if you suffer hyperthyroidism. You only need a few flakes, or as little as a quarter-teaspoon a day, to get your mineral needs, and it is best to get your minerals from a variety of whole food and whole herb sources. Don’t use on a daily basis for more than 2 weeks at a time, taking a 2 week break before using again. This will prevent you from overdosing iodine with potential imbalance in thyroid function. For periodic use only and not to be taken for extended periods of time. Not to be used while pregnant.
For educational purposes only.
CCRES ALGAE TEAM 
part of 
Croatian Center of Renewable Energy Sources



This information has not been evaluated by the Food and Drug Administration.
This information is not intended to diagnose, treat, cure, or prevent any disease.
Tagged , , , ,

The Effects of Astaxanthin – Gastric Health

The Effects of Astaxanthin – Gastric Health

 

 

Astaxanthin for Dyspepsia and Helicobacter pylori

Helicobacter pylori 

Dyspepsia is the general term given to a variety of digestive problems localized in the upper abdominal region. Typical symptoms for example include stomach pain, gas, acid-reflux or bloating. Dyspepsia is like the stomach version of the irritable bowel syndrome and its symptoms may appear at any age or to any gender. The medical approach to dyspepsia involves looking for treatable causes and addressing them if identified. Failing that, doctors suggest treatments by trial-and-error. The problem associated with this non-standardized approach involves drugs that may not work, may cause side effects and exacerbate the patient’s condition brought on by stressful attempts to cure symptoms.
To understand the benefits of astaxanthin in dyspepsia, it is necessary to categorize specific types; most common forms are either non-ulcer dyspepsia or gastric dyspepsia. Non-ulcer dyspepsia problems usually do not have an identifiable cause, but fortunately, for most cases it is non-disease related and therefore temporary. On the other hand, gastric type dyspepsia is more severe and linked to identifiable causes. For example, the bacterial infection of Helicobacter pylori is a commonly known cause. Pathological symptoms of H. pylori infection include high levels of oxidative stress and inflammation in the stomach lining and symptoms like gastric pain and acid reflux., H. pylori can contribute to mild and severe kinds of symptoms, but on the other hand, people who are H. pylori positive can remain asymptomatic whereas others may develop into clinical problems. It is still unclear what triggers the severe form of infection and how the bacteria is passed on, but scientists suggested using strong antioxidants like astaxanthin for therapy and better long term protection.

Helicobacter pylori in Gastric Dyspepsia

This Gram-negative bacterium is present in approximately half of the world population, and typically resides in the human gastric epithelium (stomach lining). H. pylori infection is generally acknowledged as the main cause for type B gastritis, peptic ulcer disease and gastric cancer. The pathogenesis of this infection is partly due to the immunological response as shown by Bennedsen et al., (1999). Astaxanthin (200 mg/kg body weight) fed to H. pylori infected mice for 10 days exhibited signs of improved immune system. Normally, the T-helper1 (Th1) response exacerbates inflammation and epithelial cell damage due to infection, but the astaxanthin treated mice responded with a mixed Th1/Th2-response (Figure 1), which lowered gastric inflammation (Figure 2) and bacterial loads (Figure 3). Furthermore, the findings by Wang et al., (2000) also supported the idea that a diet supplemented with astaxanthin or vitamin C in mice lowered inflammation after 10-days of treatment (in vivo), and also inhibit H. pylori growth (in vitro). The mice treated with astaxanthin (10 mg/kg body weight) had the same effect as vitamin C (400 mg/Kg) which significantly lowered gastric inflammation and lipid peroxidation (Figure 4) compared to infected control mice; which continued to develop severe gastritis.

Figure 1. IL-4 release of splenocytes after restimulation with H. pylori sonicate (Bennedsen et al., 1999) Figure 1. IL-4 release of splenocytes after restimulation with H. pylori sonicate (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin improved the cytokine IL-4 response (Th2 T-cell) to the presence of H. pylori (in vitro).
Figure 2. Gastric inflammation (antrum + corpus) (Bennedsen et al., 1999)
  Figure 2. Gastric inflammation (antrum + corpus) (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin reduced gastric inflammation in Helicobacter pylori infected mice.
Figure 3. Bacterial load (antrum + corpus) (Bennedsen et al., 1999) Figure 3. Bacterial load (antrum + corpus) (Bennedsen <em>et al.</em>, 1999)  
Astaxanthin reduced Helicobacter pylori colonization of the stomach of infected mice.
Figure 4. Amount of lipid peroxidation products (MDA and 4-hydroxyalkenals) during H. pylori infection (Wang et al., 2000) 
Figure 4. Amount of lipid peroxidation products (MDA and 4-hydroxyalkenals) during H. pylori infection (Wang <em>et al.</em>, 2000)  
Lipid peroxidation levels lowered in H. pylori infected mice after treatment with astaxanthin or Vitamin C.

The success of astaxanthin in dyspepsia animal models prompted further prospective human studies. In 1999, the first clinical study performed in collaboration with the Centre for Digestive Diseases, Australia, involved 10 H. pylori positive subjects (non-ulcer) with typical dyspeptic symptoms such as heartburn and gastric pain, were each treated with 40 mg daily dose of astaxanthin for 21 days. 10 clinical parameters assessed the efficacy before and after the treatment period. The gastric pain, heartburn and total clinical symptoms results showed a significant drop of 66%, 78% and 52% drop respectively (Figure 5). Furthermore, follow-up checks 27 days after the cessation of astaxanthin intake (a total of 49 days from day 0), showed that the dyspeptic symptoms remained low (Lignell et al., 1999). In summary, astaxanthin effectively controlled the dyspepsia symptoms, and H. pylori eradication trend was observed, but not significant.

Figure 5. Total Clinical Symptoms (Lignell et al., 1999) Figure 5. Total Clinical Symptoms (Lignell <em>et al.</em>, 1999)  
Astaxanthin reduced total grade of clinical symptoms in H. pylori positive non-ulcer dyspeptic subjects after 21 days. Low symptom score continued even up to 28 days after treatment ceased.

Reflux in Non-Ulcer Dyspepsia

Helicobacter pylori 

Approximately one in four people experience dyspepsia at some time that are linked to common causes such as food types, stress, stomach ulcers, or acid reflux (stomach acid backs-up into the esophagus). If the exact causes of non-ulcer dyspepsia are unknown, there are no standardized treatments that exist to effectively treat the patient. The usual procedure involves the problematic remedies of acid blocking medicines, painkillers or antibiotics. However, drug treatment faces problems with increasing antibiotic resistant bacteria and carries increased risk of damage to the stomach. Therefore, clinically proven non-drug treatments are becoming more attractive to physicians and patients.
Astaxanthin efficacy in non-ulcer dyspepsia was demonstrated in a randomized double-blind placebo controlled study involving 131 patients complaining of non-ulcer dyspepsia. This collaborative trial conducted by the Kaunas University Hospital, Lithuania; Rigshospitalet, Copenhagen; University of Lund and the Karolinska Institute, Sweden demonstrated that 40 mg astaxanthin treatment up to 4 weeks significantly reduced reflux compared to the 16 mg.

Figure 6. Reflux-syndrome 
 Figure 6. Reflux-syndrome  
Reduced reflux-syndrome score of non-ulcer dyspepsia patients treated with 16 mg and 40 mg astaxanthin.

Outlook

There are considerable overlaps in a number of gastrointestinal disorders that may be treatable with conventional medicine, but what if it does not work? In that case, astaxanthin may be useful, particularly against H. pylori positive gastritis and non-ulcer dyspepsia acid reflux. The mechanisms of action include the following: decreasing oxidative stress by astaxanthin’s potent antioxidant property; controlling bacterial infection by shifting the immune response; and alleviating dyspeptic symptoms by retarding inflammation. Furthermore, these results infer that acid reflux in connection with either H. pylori positive or negative conditions can still expect improvements with astaxanthin.

References

  1. Bennedsen M, Wang X, Willen R. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol Lett. 1999. 70: 185-189.
  2. Kupcinskas L, Lafolie P, Lignell A, Kiudelis G, Jonaitis L, Adamonis K, Andersen LP, Wadstrom T. Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: A prospective, randomized, double blind, and placebo-controlled study. Phytomedicine 2008. 15: 391–399.
  3. Lignell A, Surace R, Bottiger P, Borody TJ. Symptom improvement in Helicobacter pylori positive non-ulcer dyspeptic patient after treatment with the carotenoid astaxanthin. In: 12th International Carotenoid Symposium, Cairns, Australia, 18-23 July 1999.
  4. Wang X, Willen R, Wadstrom T. Astaxanthin rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother. 2000. 44: 2452-2457.


CCRES special thanks to 
  Mr. Mitsunori Nishida, 
 
President of Corporate Fuji Chemical Industry Co., Ltd.

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , ,

The Effects of Astaxanthin – Weight Control

The Effects of Astaxanthin – Weight Control

 

 

Physical Endurance and Muscle Recovery

Physical Endurance and Muscle Recovery 

Work, Sport, Leisure – in fact all physical activity will generate reactive oxygen species (ROS); the more intense the activity the greater number of free radicals. ROS are shown to have damaging effects on muscle performance and recovery. Published and on-going research, focused on improving endurance and reducing recovery time, are showing dramatic benefits linked to the potent carotenoid – astaxanthin. These findings are bringing astaxanthin to the forefront as a dietary supplement for professional athletes and physically active people.

Important to physical activity are our mitochondrial cells, often referred to as the “power stations of the cell” , which provide as much as 95% of our body’s pure energy (primarily by the burning of muscle glycogen and fatty acids). Unfortunately, a portion of this energy produces highly reactive and damaging ROS. ROS damage cells by triggering peroxidation of the cell membrane components, and oxidation of DNA and proteins. Furthermore, ROS continue to affect muscles even after the strenuous exercise has ceased. ROS activate the inflammation response whereby monocytes migrate into the muscle tissue causing additional cell damage. Often we will notice the onset of muscle damage during recovery in the form of tiredness and soreness. In addition to improving muscle performance through devised exercise regime, the sports research community is looking at other methods, such as nutrition to fuel and protect the body under extreme physical conditions. In the past, Vitamins E and C helped make the use of antioxidants a popular tool against oxidative damage during intense physical activity. Today, informed by current research we can point to astaxanthin as the antioxidant of choice for sports performance. Astaxanthin demonstrated 3 important physical benefits in clinical trials and supporting studies. Astaxanthin increased endurance, reduced muscle damage and improved lipid metabolism.

Did you know?

Astaxanthin Boosts Endurance

In a randomized, double-blind, placebo controlled study on healthy men supplemented with 4 mg astaxanthin per day for up to 6 months at Karolinska Institute, Sweden, standardized exercise tests demonstrated that the average number of knee bends performed increased only in the astaxanthin treated group at 3 months, and by the 6 month significant improvements were observed (Figure 1) (Malmsten & Lignell, 2008).

Figure 1. Increase in strength/endurance (Malmsten & Lignell, 2008)
  Figure 1. Increase in strength/endurance (Malmsten & Lignell, 2008)  
Astaxanthin improved strength/endurance at 3 and 6 months determined by the average number of knee bends per person.
Figure 2. Effect of astaxanthin on swimming time (Ikeuchi et al., 2006) Figure 2. Effect of astaxanthin on swimming time (Ikeuchi <em>et al.</em>, 2006)  
Astaxanthin improves endurance in a dose-dependant manner.

Astaxanthin Boosts EnduranceIn another study, Aoi et al., (2008) demonstrated that astaxanthin may modify muscle metabolism by its antioxidant property and result in improved muscle performance and weight loss benefits. After 4 weeks the mice running time to exhaustion had significantly improved by up to 20 % , (2002) of Juntendo University, Japan, demonstrated by using 1200 meter track athletes, that a daily dose of 6 mg per day for 4 weeks resulted in their bodies accumulating lower levels of lactic acid (Figure 3). Ikeuchi et al., (2006) also reported the same findings and furthermore, astaxanthin efficacy had a dose-dependent response (Figure 4).

Figure 3. Reduction of lactic acid build-up after astaxanthin supplementation in track subjects (Sawaki et al., 2002) 
Figure 3. Reduction of lactic acid build-up after astaxanthin supplementation in track subjects (Sawaki <em>et al.</em>, 2002)
Figure 4. Effect of astaxanthin on blood lactate during swimming for 15 minutes (Ikeuchi et al., 2006) Figure 4. Effect of astaxanthin on blood lactate during swimming for 15 minutes (Ikeuchi <em>et al.</em>, 2006)  
Astaxanthin reduced build-up of lactic acid in a dose-dependant manner.

In a double blind controlled placebo study, healthy women (n= 32; age-23-60) who ingested 12 mg of astaxanthin for 6 weeks significantly reduced their body fat (4%) when conducting routine walking exercise, compared to a placebo group. In addition, while control group increased their lactic acid by 31% compared to the astaxanthin group – only 13%

The Mechanism

The mechanism behind muscle endurance is based on several findings. Generally, astaxanthin protected the skeletal muscle from the increased damage of oxidative stress generated by physical activity. Furthermore, astaxanthin increased the metabolism of lipids as the main source of energy production by protecting the carnitine palmitoyltransferase I (CPT I) involved in fatty acid transport into mitochondria. Aoi et al., (2003) of Kyoto Prefecture University used mice models that may partially explain the efficacy of astaxanthin; they compared control, exercise placebo, and astaxanthin treated exercise groups after intense physical activity. 4-hydroxy-2-nonenal-modified-protein (4-HNE) stain analyses of the calf (gastrocnemius) muscles revealed significantly lower peroxidation damage (Figure 5).

Figure 5. Effect of astaxanthin on 4-HNE-modifed proteins in leg muscle before and after exercise (Aoi et al., 2003) Figure 5. Effect of astaxanthin on 4-HNE-modifed proteins in leg muscle before and after exercise (Aoi <em>et al.</em>, 2003)

Other biochemical markers for oxidative damage and inflammation such as DNA, (2003) also explained that astaxanthin directly modulates inflammation caused by the release of the pro-inflammatory cytokines and mediators. In vivo and in vitro tests demonstrate that astaxanthin inhibits the IκB Kinase (IKK) dependant activation of the Nuclear Factor-kB (NF-κB) pathway, a key step in the production of pro-inflammatory cytokines and mediators. Aoi et al., 2008 also demonstrated increased lipid metabolism compared to carbohydrate as the main source of energy during strenuous activity (Figure 6). Furthermore, analysis of the mitochondrial lipid transport enzyme known as carnitine palmitoyltransferase I (CPT I) revealed increased fat localization (Figure 7) and reduction of oxidative damage in the presence of astaxanthin (Figure 8). CPT I is important because it regulates fatty acyl-CoA entry into the mitochondria in the oxidation of fatty acids in muscle. Exercise-induced ROS may partly limit utilization of fatty acid via diminishing CPT I activity.

Figure 6. Fat substrate utilization increased with astaxanthin (Aoi et al., 2008)
  Figure 6. Fat substrate utilization increased with astaxanthin (Aoi <em>et al.</em>, 2008)  

 Calculated from the respiratory exchange ratio (RER) and oxygen consumption. Values are means ± SE obtained from 8 mice.

Figure 7. Increased amount of FAT/CD36 that coimmunoprecipitated with CPT I skeletal muscle after a single session of exercise at 30 m/min for 30 min (Aoi et al., 2008) Figure 7. Increased amount of FAT/CD36 that coimmunoprecipitated with CPT I skeletal muscle after a single session of exercise at 30 m/min for 30 min (Aoi <em>et al.</em>, 2008)  
Values are means ± SE obtained from 6 mice.
Figure 8. Astaxanthin reduced the amount of HEL-modified CPT1 in skeletal muscle after a single session of exercise at 30m/min for 30min (Aoi et al., 2008) Figure 8. Astaxanthin reduced the amount of HEL-modified CPT1 in skeletal muscle after a single session of exercise at 30m/min for 30min (Aoi <em>et al.</em>, 2008)  
Values are means ± SE obtained from 6 mice.

Outlook

Outlook 

Strenuous physical activity generates high levels of ROS which affect muscle performance and metabolism of lipids. New research shows that astaxanthin can modify muscle metabolism via its antioxidant effect, resulting in the improvement of muscle function during exercise. Therefore, astaxanthin is expected to be useful for physically active people as well as athletes.

References

  1. Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, Toyokuni S, Oka S, Yasuhara M, Yoshikawa T. (2003). Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal, 5(1):139-144.
  2. Aoi W, Naito Y, Takanami Y, Ishii T, Kawai Y, Akagiri S, Kato Y, Osawa T, Yoshikawa T. (2008). Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem. Biophys. Res. Com., 366:892–897.
  3. Fukamauchi, M. (2007). Food Functionality of astaxanthin-10: Synergistic effects of astaxanthin-10 intake and aerobic exercise. Food Style 21, 11(10). [In Japanese]
  4. Ikeuchi M, Koyama T, Takahashi J, Yazawa K. (2006). Effects of astaxanthin supplementation on exercise-induced fatigue in mice. Bio. Pharm. Bull., 29(10):2106-2110.
  5. Lee SJ, Bai SK, Lee KS, Namkoong S, Na HJ, Ha KS, Han JA, Yim SV, Chang K, Kwon YG, Lee SK, Kim YM. (2003). Astaxanthin Inhibits Nitric Oxide Production and Inflammatory Gene Expression by Suppressing IκB Kinase-dependent NF-κB Activation. Mol. Cells, 16(1):97-105.
  6. Malmsten C, Lignell A. (2008). Dietary supplementation with astaxanthin rich algal meal improves muscle endurance – a double blind study on male students. Carotenoid Science 13:20-22.
  7. Sawaki K, Yoshigi H, Aoki K, Koikawa N, Azumane A, Kaneko K, Yamaguchi M. (2002). Sports performance benefits from taking natural astaxanthin characterized by visual activity and muscle fatigue improvements in humans. J Clin.Therap. Med., 18(9):73- 88.


CCRES special thanks to 
  Mr. Mitsunori Nishida, 
 
President of Corporate Fuji Chemical Industry Co., Ltd.

Croatian Center of Renewable Energy Sources (CCRES) 

Tagged , , , , ,

The Effects of Astaxanthin – Cardiovascular Health

 

The Effects of Astaxanthin – Cardiovascular Health

 

Atherosclerosis: 

A Silent Cardiovascular Condition that Kills 1 Person Every 3 Seconds

Atherosclerosis: A Silent Cardiovascular Condition that Kill 1 Person every 3 SecondsHigh blood pressure, high levels of triglycerides, oxidation of Low Density Lipoprotein (LDL) cholesterol and lowering levels of High Density Lipoprotein (HDL) cholesterol are the primary cause that leads to oxidative stress and chronic inflammation in the vessels. This condition emerges at early age and gradually compromises vascular integrity leading to atherosclerosis at a later stage of a person lifespan. Atherosclerosis is a cardiovascular condition in which fat deposits and become oxidized along the inner lining of the artery walls. This silent yet deadly build up progressively thickens, hardens and eventually blocks the arteries leading to sudden and severe circulatory complications including vascular ischemia, stroke or heart attack. Cardiovascular and circulatory deaths related to atherosclerosis accounts for 29% of all deaths globally; the primary cause of death in EU (42%), Eastern Europe (48%), UK (39%), North America (49%), China (34%), South America (31%); Middle East (31%) and India (29%) – World Health Report, 2010.

Salmon Consumption and Lower Incidence of Cardiovascular Diseases Among Japanese. Just a Coincidence?

Salmon Consumption and Lower Incidence of Cardiovascular Diseases Among Japanese. Just a Coincidence?The cardiovascular and circulatory benefits of natural astaxanthin are evident among Japanese who are the uppermost consumers of food containing astaxanthin (AX) in the world and have the lowest incidences of heart diseases amongst developed countries. As the French paradox of cardiovascular health is connected to “sipping red-wine” and Italians longevity to “olive oil dressed” salads, Japanese cardiovascular resilience can be associated with consumption of “astaxanthin-soaked” salmon. In fact, a growing number of scientific evidence points to a robust link between natural astaxanthin and cardiovascular health – 30 cardiovascular specific research publications including 10 clinical studies. Research suggests that oral supplementation of astaxanthin may reduce the risks of cardiovascular diseases by reducing hypertension while enhancing blood rheology, capillary circulation and vascular resilience.

The Effects of Astaxanthin on Atherosclerosis Prevention and Development

The Effects of Astaxanthin on Atherosclerosis Prevention and Development

Astaxanthin Increase HDL Cholesterol and Decrease Serum Triglycerides

For every 1 mg/dl increase in good cholesterol HDL, the risk of cardiovascular diseases drops by 3%. In fact, baby boomers with low-HDL (> 40mg/dL) increase their chances of experiencing coronary events by 50%. Recent studies suggest that individuals with low HDL cholesterol who also have high triglycerides levels are 11 times more likely to develop cardiovascular diseases. Achieving a significant increase of HDL is notoriously hard because it requires drastic lifestyle changes, so often ending with modest results or sudden relapses.
Recent research suggests that astaxanthin supplementation can support lifestyle changers by synergizing HDL increasing effect with decreased level of serum triglycerides. Two recent studies demonstrated that astaxanthin consumption can steadily increase HDL cholesterol in both healthy and less healthy individuals -both as preventive and therapeutic use. Yoshida et al., (2009) conducted the first ever randomized, placebo-controlled human study to evaluate astaxanthin effect on dyslipidemia and metabolic syndrome. Sixty-one hyper-triglyceride subjects between 42-47 years old (BMI 24 mg/kg), received 0 (placebo), 6 mg, 12mg, 18mg of astaxanthin daily for 12 weeks. While the placebo group did not change their existing condition, the astaxanthin groups increased their HDL cholesterol by 11%, 15% and 7% respectively and decreased their serum triglycerides level by 17%, 25% and 24% respectively (figure 1).

Figure 1. Astaxanthin increase HDL cholesterol and decrease Serum Triglycerides (STR). Subjects with lower levels of HDL and higher levels of STR are 11 times more likely to develop cardiovascular diseases (Yoshida et al., 2009) Figure 1. Astaxanthin increase HDL cholesterol and decrease Serum Triglycerides (STR). Subjects with lower levels of HDL and higher levels of STR are 11 times more likely to develop cardiovascular diseases (Yonei et al, 2010) 61 hyper- triglyceride subjects between 42-47 yo; (BMI 24 mg/kg), received 0 (placebo), 6 mg, 12mg, 18mg of astaxanthin per day for 12 weeks

In a recent clinical study, 73 subjects between 20-60 years of age who received 4mg of natural astaxanthin per day for 4 weeks had their serum triglycerides level decreased by 25 %(Satoh et al., 2009). In another study conducted in Japan, 15 healthy adults increased their HDL by 6% after ingesting 9mg/daily of astaxanthin for 8 weeks (Matsumaya et al., 2010). In 2007, Hussein et al., has shown that astaxanthin reduced the size of fat cells in rats, which lead to a lower risk of cardiovascular complications and chronic inflammation (figure 2).

Figure 2. Astaxanthin reduced the size of fat cells. Large cells usually indicate higher risk of fat-oxidation chronic inflammation and oxidative stress, which are the leading causes of cardiovascular diseases (x10) (Hussein et al., 2006) Figure 2. Astaxanthin reduced the size of fat cells. Large cells usually indicate higher risk of fat-oxidation chronic inflammation and oxidative stress, which are the leading causes of cardiovascular diseases (x10) (Hussein <em>et al.</em>, 2006)

Astaxanthin Decrease Red Blood Cells Oxidation and Lipid-Peroxidation

Astaxanthin Decrease Red Blood Cells Oxidation and Lipid-PeroxidationHigh levels of triglycerides and low levels of HDL also increase the likelihood of fat-oxidation in vessels and formation of “wounds” in the inner lining of artery walls (endothelium) leading to chronic inflammation and oxidative stress; this situation causes degradation, narrowing and thickening of arteries. Three recent clinical studies have robustly pointed to astaxanthin ability to reduce fat peroxidation in blood plasma. In a randomized-double-blind placebo study, 33 overweight subjects received 5mg or 20mg astaxanthin daily for 3 weeks. Their lipid peroxidation markers plasma MDA Level (mmol) and plasma ISP (ng/mL) decreased by 30% and 60% in average (Choi et al., 2011).
In another randomized double blind placebo controlled study, 30 subjects between 50 and 69 years of age received 0 (placebo), 6 or 12mg astaxanthin daily for 12 weeks (Nakagawa et al., 2011). The amount of oxidized red blood cells (PLOOH um0l/ml) decreased by 17% and 24% respectively(figure 3).

Figure 3. Astaxanthin reduces red blood cells oxidation (RBCO) in senior subjects. RBCO cells has high correlation with neuro-degenerative (eg. dementia) and cardiovascular diseases (eg. heart attack) (Nakagawa et al., 2011) Figure 3. Astaxanthin reduces red blood cells oxidation (RBCO) in senior subjects. RBCO cells has high correlation with neuro-degenerative (eg. dementia) and cardiovascular diseases (eg. heart attack) (Nakagawa <em>et al.</em>, 2011) 30 subjects (15 F and 15 M) between 50 and 69 years of age , BMI 27·5 kg/m2 received 0 (placebo), 6 or 12mg astaxanthin per day for 12 weeks

In 2007, Karppi et al., conducted a randomized double blind conducted placebo controlled study with 40 non-smoking subjects between 19-33 years of age who received 0 (placebo) or 8mg of astaxanthin daily for 12 weeks. Their lipid peroxidation markers -plasma-15-hydroxy fatty acidsdecreased by 60% and plasma-12-hydroxy fatty acids by 36%. In 2000, Iwamoto et al., has also shown that astaxanthin inhibited LDL oxidation in human subjects. Professor Aoi from Kyoto Prefectural University, has shown that astaxanthin limits exercise-induced cardiac oxidation damage in mice.

Astaxanthin Enhance Biomarkers of Anti-oxidant Healthiness in the Blood Plasma

Low antioxidant activity in the blood correlates with high incidences of stroke, neurological impairment in stroke patients and cardiovascular diseases. Therefore, it is crucial to monitor the biomarkers of antioxidant capacity in the blood when assessing the efficacy of an active ingredient. In a randomized double blind study, 33 overweight subjects received 5mg or 20mg astaxanthin daily for 3 weeks. Their plasma Superoxide Dismutase Level (SOD) (U/mL) and Plasma Total Antioxidant Capacity (TAC) Level (mmol) increased 45% and 19% respectively. (Choi et al., 2011) (figure 4).
Other studies have produced similar results using different assessment methods. In an open label clinical study, 35 postmenopausal women were treated with astaxanthin daily dose of 12 mg for 8 weeks (Yonei et al., 2009). Astaxanthin supplementation increased biological antioxidant potential in the blood plasma by 5% in 8 weeks. In addition, Camera et al., suggested that astaxanthin protects and synergize with our endogenous antioxidant systems (superoxide dismutase, catalase and glutathione) from early degradation when subjected to oxidative stress (Camera et al., 2008).

Figure 4. Astaxanthin increases Plasma SOD Level and Plasma TAC level. Low levels of SOD and TAC correlates with higher incidences of stroke, neurological impairment and cardiovascular diseases (Choi et al., 2011) fig4 33 subjects received 5mg or 20mg astaxanthin x day for 3 weeks; BMI (25.0 -30.0 kg/m2) – aged 25.Normal Body Subjects – 10 non-intervention subjects (20.0 < BMI≤24.9 kg/m2) age 26

Astaxanthin Decrease Chronic Inflammation that comprise Blood Vessels Integrity

In the presence of oxidized cells in the endothelial lesions, macrophages white blood cells infiltrate in affected areas to clear away pathogens and dead cells. Yet, in the attempt to clean up the oxidized areas, macrophages may get overweighed with excessive lipoproteins and unable to leave the artery walls. This peculiar but common situation triggers a cascade of chronic inflammatory responses and pro-oxidant activities that degraded the structural integrity of the vessels. Therefore, up-regulated activity of oxidized LDL via macrophage induced inflammation is central to the initiation and progression of atherosclerosis. They are closely associated with plaque development, aggravation and ruptures.
A recent study shows that astaxanthin decreased macrophage occupied lesion areas and therefore inflammation in the vessels of rabbits by 40% compared to control group (figure 5). Furthermore, rabbits that ingested 4mg astaxanthin everyday for 24 weeks decreased programmed cell death (apoptosis) by 42% and cell death (necrosis) by 17% in the aorta (Li et al., 2004).

Figure 5. Astaxanthin decrease chronic inflammation and cell death in the inner lining of the vessels. Chronic inflammation and apoptosis in the endothelium dramatically accelerates vascular degradation and atherosclerotic plaque formation. (Li et al., 2004) Figure 5. Astaxanthin decrease chronic inflammation and cell death in the inner lining of the vessels. Chronic inflammation and apoptosis in the endothelium dramatically accelerates vascular degradation and atherosclerotic plaque formation. (Li <em>et al.</em>, 2004) Rabbits ingested 4mg of placebo, Vitamin E or astaxanthin everyday for 24 weeks.

In-vitro study provides further evidences that astaxanthin (5-10uM) decreases macrophages related activation (SR-A and CD36) by 48% and 58% respectively (Kishimoto et al., 2009). A recent animal studies show that astaxanthin could ameliorate endothelial dysfunction by significantly improving the level of substances important for the regulation of vascular integrity. In more details, treatment with astaxanthin for 42 days decreased serum oxidized LDL cholesterol, aortic MDA levels, attenuated endothelium-dependent vasodilatory to acetylcholine, up-regulate eNOS expression and decreased LDL cholesterol receptor expression (figure 6).

Figure 6. Astaxanthin treatment improved markers of endothelial dysfunction by reducing oxidation of LDL cholesterol and MDA. Higher levels of LDL oxidation and MDA expression highly correlates with structural damages in blood vessels and impairment of blood flow. (Zhao et al., 2011) Figure 6. Astaxanthin treatment improved markers of endothelial dysfunction by reducing oxidation of LDL cholesterol and MDA. Higher levels of LDL oxidation and MDA expression highly correlates with structural damages in blood vessels and impairment of blood flow. (Zhao <em>et al.</em>, 2011) Diabetic rats were treated with 10 mg/kg of astaxanthin or olive oil for 42 days.

Animal studies have also shown that astaxanthin ameliorated structural changes in the blood vessels – reduction in wall thickness by 47% and improved vascular tone by 36% in spontaneously hypertensive rats (Hussein et al., 2006). Such structural changes was observed in the reduction of the number of branched elastin bands and improved vessel wall to lumen thickness ratio.
In another study, 24 weeks supplementation of natural astaxanthin reduced levels of MMP3 expression in the aorta of rabbits – a crucial factor that lead to a degradation of elastin and collagen structures which determines the mechanical properties of connective tissues in the vessels (figure 7). In the experiment, astaxanthin enhanced plaque stability leading to a significant reduction of plaque ruptures (Li et al., 2004).

Figure 7. Astaxanthin inhibit MMP over-expression in the thoracic aorta. Over-expression of MMP is a crucial factor that leads to the degradation of vascular integrity and escalation of atherosclerotic plaque ruptures (Li et al., 2004) Figure 7. Astaxanthin inhibit MMP over-expression in the thoracic aorta. Over-expression of MMP is a crucial factor that leads to the degradation of vascular integrity and escalation of atherosclerotic plaque ruptures (Li <em>et al.</em>, 2004) Animal Study – Rabbits ingested AX 4mg/ Kg of body weight daily x 24weeks

Astaxanthin Improving Vascular Resilience and Capillary Blood Flow

Astaxanthin Improving Vascular Resilience and Capillary Blood FlowGood circulation, quality of blood and resilient vessels are the key features required to fight development and progression of atherosclerosis. Blood rich in antioxidants bring nutrients and oxygen to organs while removing waste through a smooth vascular resilience and capillary flow.
Recent human studies suggest that 6mg daily of astaxanthin can enhance blood flow by 10% in terms of capillary transit time -how fast the blood runs through the vessels (Miyawaki et al., 2008). Another complementary study showed that astaxanthin decreased lower limb vascular resistance by 17% – the degree to which the blood vessels impede the flow of blood (Iwabayashi et al., 2009).(figure 8) High resistance causes an increase in blood pressure, which increases the workload of the heart. In 2005, Nagaki et al., conducted another randomized double-blind study in which 36 subjects who received oral astaxanthin, 6mg/day for 4 weeks experienced a 4% improvement in capillary blood flow (Nagaki et al., 2005).

Figure 8. astaxanthin decreased lower limb vascular resistance (LLVR) – the degree to which the vessels impede the flow of blood. LLVR increase blood pressure and circulatory complications that lead to peripheral vascular diseases, venous thrombosis and painful claudication (Yonei et al., 2009) Figure 8. astaxanthin decreased lower limb vascular resistance (LLVR) – the degree to which the vessels impede the flow of blood. LLVR increase blood pressure and circulatory complications that lead to peripheral vascular diseases, venous thrombosis and painful claudication (Yonei <em>et al.</em>, 2009) 35 healthy postmenopausal women (BMI 22.1) were included in the study, treated with astaxanthin daily dose of 12 mg for 8 weeks.

Astaxanthin Reduces Hypertension

A series of human studies suggest that astaxanthin decreases blood pressure by improving blood flow and vascular tone. In a recent clinical study, 73 subjects, between 20-60 years of age, who received 4mg of astaxanthin for day for 4 weeks showed a significant decrease in systolic blood pressure (Satoh et al., 2009). In another study, 15 healthy subjects, between 27-50 of age, who received 9mg/day of astaxanthin for 12 weeks had their diastolic blood pressure decreased significantly (Matsuyama et al., 2010).
A series of animal studies have largely replicated the effects of astaxanthin found in human studies (e.g. Ruiz et al., 2010; Preuss, 2011).

Outlook

Clinical studies suggests that oral supplementation of natural astaxanthin (4mg-12mg) may reduce the risk cardiovascular complications by enhancing blood rheology, lipid-metabolism, capillary circulation, vascular resilience and the endogenous antioxidant defense. Other clinical studies have also shown that astaxanthin reduce lipid-peroxidation, LDL cholesterol, blood pressure and DNA damage. Mechanism of action includes inhibition of macrophage-induced inflammation in the endothelium, oxidative stress-induced apoptosis and MPP-induced-structural degradation of the vessels. Furthermore, recent studies have also outlined that astaxanthin ameliorates nitric oxide dependent vessels dilation and reduce sensitivity to the angiotensin.

References

  1. Aoi et al., (2003). Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxidants & Redox Signaling. 5(1):139-44.
  2. Hussein et al., (2005b). Antihypertensive potential and mechanism of action of astaxanthin II. Vascular reactivity and hemorheology in spontaneously hypertensive rats. Biol. Pharm. Bull., 28(6):967-971.
  3. Hussein et al., (2006b). Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull., 29(4):684-688.
  4. Hussein et al., (2005a). Antihypertensive and Neuroprotective Effects of Astaxanthin in Experimental Animals. Biol. Pharm. Bull., 28(1): 47-52.
  5. Iwabayashi et al., (2009). Efficacy and safety of eight-week treatment with astaxanthin in individuals screened for increased oxidative stress burden. Journal of Anti-Aging Medicine., 6(4):15-21
  6. Iwamoto et al., (2000). Inhibition of low-density lipoprotein oxidation by astaxanthin. Journal of Atherosclerosis Thrombosis. 7(4):216-22.
  7. Karppi et al., (2007). Effects of astaxanthin supplementation on lipid eroxidation. Int J Vitam Nutr Jan; 77 (1): 3-11.
  8. Kishimoto et al., (2009). Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. European Journal of Nutrition., 49(2):17-26
  9. Li et al., (2004). Alpha-tocopherol and astaxanthin decrease macrophage infiltration, apoptosis and vulnerability in atheroma of hyperlipidaemic rabbits. Journal of Molecular and Cellular Cardiology., 37:969-978.
  10. Matsuyama et al., (2010) A Safety Study on the Long-Term Consumption of Astaxanthin in Healthy Human Volunteer. Japanese Journal of Complementary and Alternative Medicine., (7):43-50. (Translated from Japanese)
  11. Miyawaki et al., (2005). Effects of Astaxanthin on Human Blood Rheology. Journal of Clinical Therapeutics and Medicines., 21(4):421-429.7.
  12. Murillo (1992). Hypercholesterolemic effect of canthaxanthin and astaxanthin in rats. Arch. Latinoam Nutr., 42(4):409-413.
  13. Preuss et al., (2009). Astaxanthin lowers blood pressure and lessens the activity of the eroxi-angiotensin system in Zucker Fatty Rats., Journal of Functional Foods., I:13-22
  14. Yoshida et al., (2010). Administration of natural astaxanthin increases serum HDL-cholesterol and adiponectin in subjects with mild hyperlipidemia., 209 (2): 520-3.
  15. Nakagawa et al., (2011). Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes British Journal of Nutrition., (31):1-9
  16. Choi et al., (2011). Effects of Astaxanthin on Oxidative Stress in Overweight and Obese Adults Phytother. Research (in-press).
  17. Satoh et al., (2009).Preliminary Clinical Evaluation of Toxicity and Efficacy of a New Astaxanthin-rich Hameotoccus Pluvialis. J. Clin. Biochem. Nutr., 44: 280–284.
  18. Hussein et al., (2007). Astaxanthin ameliorates features of metabolic syndrome in SHR/NDmcr-cp. Life Sci., 16;80(6):522-9.
  19. Preuss, et al., (2011). High Dose Astaxanthin Lowers Blood Pressure and Increases Insulin Sensi-tivity in Rats: Are These Effects Interdependent?., 8(2):126-138.
  20. Ruiz et al., (2010). Astaxanthin-enriched-diet reduces blood pressure and improves cardiovascular parameters in spontaneously hypertensive rats. Pharmacological Research., 63(1):44-50
  21. Zhao et al., (2011). Ameliorative effect of astaxanthin on endothelial dysfunction in streptozotocin-induced diabetes in male rats. Arzneimittelforschung., 61(4): 239-246.

 CCRES special thanks to 
Mr. Mitsunori Nishida, 
President of Corporate Fuji Chemical Industry Co., Ltd.

Croatian Center of Renewable Energy Sources (CCRES) 

Tagged , , , , , ,