Category Archives: ALGAE

Nutrient data for Spirulina

Nutrient data for Spirulina

CCRES Spirulina, raw

Nutrient Unit Value per 100.0g
Water g 90.67
Energy kcal 26
Protein g 5.92
Total lipid (fat) g 0.39
Carbohydrate, by difference g 2.42
Fiber, total dietary g 0.4
Sugars, total g 0.30
Calcium, Ca mg 12
Iron, Fe mg 2.79
Magnesium, Mg mg 19
Phosphorus, P mg 11
Potassium, K mg 127
Sodium, Na mg 98
Zinc, Zn mg 0.20
Vitamin C, total ascorbic acid mg 0.9
Thiamin mg 0.222
Riboflavin mg 0.342
Niacin mg 1.196
Vitamin B-6 mg 0.034
Folate, DFE µg 9
Vitamin B-12 µg 0.00
Vitamin A, RAE µg 3
Vitamin A, IU IU 56
Vitamin E (alpha-tocopherol) mg 0.49
Vitamin D (D2 + D3) µg 0.0
Vitamin D IU 0
Vitamin K (phylloquinone) µg 2.5
Fatty acids, total saturated g 0.135
Fatty acids, total monounsaturated g 0.034
Fatty acids, total polyunsaturated g 0.106

CCRES Spirulina, dried

Nutrient Unit Value per 100.0g cup
Water g 4.68 5.24 0.33
Energy kcal 290 325 20
Protein g 57.47 64.37 4.02
Total lipid (fat) g 7.72 8.65 0.54
Carbohydrate, by difference g 23.90 26.77 1.67
Fiber, total dietary g 3.6 4.0 0.3
Sugars, total g 3.10 3.47 0.22
Calcium, Ca mg 120 134 8
Iron, Fe mg 28.50 31.92 2.00
Magnesium, Mg mg 195 218 14
Phosphorus, P mg 118 132 8
Potassium, K mg 1363 1527 95
Sodium, Na mg 1048 1174 73
Zinc, Zn mg 2.00 2.24 0.14
Vitamin C, total ascorbic acid mg 10.1 11.3 0.7
Thiamin mg 2.380 2.666 0.167
Riboflavin mg 3.670 4.110 0.257
Niacin mg 12.820 14.358 0.897
Vitamin B-6 mg 0.364 0.408 0.025
Folate, DFE µg 94 105 7
Vitamin B-12 µg 0.00 0.00 0.00
Vitamin A, RAE µg 29 32 2
Vitamin A, IU IU 570 638 40
Vitamin E (alpha-tocopherol) mg 5.00 5.60 0.35
Vitamin D (D2 + D3) µg 0.0 0.0 0.0
Vitamin D IU 0 0 0
Vitamin K (phylloquinone) µg 25.5 28.6 1.8
Fatty acids, total saturated g 2.650 2.968 0.186
Fatty acids, total monounsaturated g 0.675 0.756 0.047
Fatty acids, total polyunsaturated g 2.080 2.330 0.146
Cholesterol mg 0 0 0

CCRES special thanks to US National Nutrient Database for Standard Reference

part of
Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , ,

International Algae Congress 2012

International Algae Congress 2012

  Croatian Center of Renewable Energy Sources (CCRES) proudly presents 6th International Algae Congress

The 6th International Algae Congress which will take place on December 4 & 5 2012 in Rotterdam in the Netherlands.

Among confirmed speakers:
– Mr. V. (Vítor) Verdelho, Board Member and Chief Development Officer, Algafuel P
– Mr. A. (Andreas) Weber, Algae Biotech SL E
– Prof. dr. B. (Birgit) Kamm, Honorary Professor Biorefinery Technology, FI Biopos e.V. and BTU Cottbus D
– Dr. J. (Jose) Olivares, Executive Director, NAABB USA
– Dr. H. (Hans) Kleivdal, Research Leader, Centre for Applied Biotechnology, Uni Research AS N
– Mr. J. (John) Benemann, CEO, MicroBio Engineering, Inc USA
Dr. J. (Joachim) Grill, CEO, See Algae Technology, D
– Dr. M. (Magali) Siaut, PhD, Greenstars Program FR– Mr. P. (Phillippe) Tramoy, Managing Partner of the company CBDM.T – Market & Business Intelligence FR
– Prof. S. (Sammy) Boussiba, director of the French Associates Institute for Agriculture & Biotechnology of Dryland at the Jacob
Blaustein Institutes for Desert Research at Ben Gurion University ISRAEL– Mr. R. (René) Draaisma, Unilever R&D Vlaardingen Research NL
– Dr. M.A. (Monique) Schoondorp, Managing Partner, Algaecom and professor new business development Hanze University of Applied Sciences, Groningen
– Dr. Z. (Zsuzsanna) Libor, Cranfield University UK
– Dr. C. (Cees) Sagt, Principal Scientist Strain Development, DSM Biotechnology Center, DSM Food Specialties B.V NL
– Prof. R. (Rene) Wijffels, Wageningen University NL– Mr. P. (Pieter) Boelens, COO Evodos NL– Mr. D. (Doug) DiLillo, Pall Energy Group Industrial BioTechnology Lead BioBased Fuels & Chemicals Markets USA– Dr. M. (Monika) Solanki, Birmingham City University GB– Dr. J. (Jennifer) Champenois, Centre d’Etude et de Valorisation des Algues (CEVA)FR– Dr. C. (Chris) de Visser, Wageningen UR NL
– Dr. R. (Rommie) van der Weide, Acrres NL

Please scroll down for more information.

6th International Algae Congress 2012 at a glanceFollowing the success of the previous five international algae congresses, the organisers are pleased to announce the sixth International Algae Congress. The sixth International Algae Congress takes place at the floating pavilion in Rotterdam The Netherlands, on 4 & 5 December next.

It is organised by DLG BENELUX from the Netherlands.
Address Floating pavilion; Tillemakade 99, 3072 AX Rotterdam, The Netherlands.

Facts & figures 5th International Algae Congress Berlin, 2011:
Over 120 algae stakeholders
+30 countries (European ánd Overseas )
26 speakers, CEO’s, professors from all over the world
+10 poster presentations, exhibitors
Senior Life Time Achievement Award Ceremony

Register to:– Meet the international algae elite
– Examine new developments
– Recognize key opportunities for your business
– Maximize your position in the global algae market


Programme and SessionsUpdates on the programme and the speakers are still made, so please keep an eye on this page, or sign up for our e-newsletter.

Sessions address the following themes:

Session 1: Future European Algae Biomass; forecast, regulations and investment opportunities – Forecast
– Regulations
– Investment opportunities

Session 2: Commercial Algae Production, new views & concepts from laboratory and field– Reduction of energy input
– Efficiënt use of sunlight
– Nutrient recycle
– Scale up
– LCA’s/ Design scenarios
– Innovative photobioreactors

Session 3: EU & Global projects
– Reports on FP7 and global projects

Session 4: Strain Selection &  Genetic Engineering
– Latest developments
– Innovative technologies

Session 5: Biofuel production & Biorefinery
– Promising Technologies
– Innovative business models that lead to the implementation of Biorefinery

Session 6: Upscaling and Commercialisation
– Market analysis studies
– Market potential and time lines
Session 7: Markets & Closing

Registration fees excl VAT– Congress delegate €895 incl conference dinner
– Congress delegate 1 day €450
– Student ( * copy student card required ) €299
– Poster presentation €100 ( excl congress sessions )
– Stand €495
– Abstract book & presentations €250

You will meet delegates from various sectors from the algae industry, including scientists, aquaculture, algae producers, waste managers, water treatment, end-users (food, feed, aquaculture, pharma), VC PE and other investors, consultants, energy companies, equipment, technology & infrastructure and government agencies.

Please click here for testimonials from delegates and speakers.

Algae Information MarketAn excellent platform where companies and scientists can demonstrate their products and/or services by means of a stand or a poster presentation. The information market will be located in the foyer surrounding the congress room. This foyer is used for the registration of participants, coffee breaks and lunches as well. You will have sufficient time for networking with participants during these coffee breaks and lunches.

Please click here for an overview of the partipants and the possibilities.


The International Algae Congress is the opportunity to;• Position your brand and business
• Get direct and exclusive access to a group of targeted decision makers and
• Create new partnerships and alliances
• Share knowledge and know-how with your target group
• Benefit from unrivalled lead generation and profiling at this event


Team will be happy to answer your questions, please contact;

Project manager
Christie de Vrij
+31 (0)348 – 484 002

Tagged , , , , , , ,


With oil prices reaching $105 a barrel for the first time since 2008, the biofuel industry is looking more attractive every day. As global demand rises and petroleum supplies diminish, countries are turning to algae for energy security.
 In smaller countries, like Croatia, where oil demand is low, and emission standards are poor, algae biofuel has the potential to significantly reduce reliance on foreign oil.
works on
Biodiesel from MicroalgaeThe oil from the algae can be used for any combustion process. An even wider range of use for algae oil is obtained by the transesterification to biodiesel. This biodiesel can be blended with fossil diesel or can be directly driven as pure biodiesel B100.

Biodiesel from microalgae has a comparable quality as rapeseed methyl ester and meets the standard EN 14214. At biodiesel production about 12% glycerin is produced as a by-product. This glycerin is a valuable resource for the production of algae in closed ponds, the heterotrophic processes. Thus, the entire algae oil can be used as fuel.

Fish FoodAlgae provide a natural solution for the expanding fishing industry:

High-protein fish food
Replacement for existing fish meal production
Algae have nutrients of many young fishes available

The fishing industry recorded an annual growth of over 10% and, according to experts, will beat the global beef consumption in 2015.

The Technology developed by CCRES offers the opportunity to deliver part of the needed proteins for fish farming on the resulting algal biomass.

Protein for the food industryThe demand for high-quality protein for the food industry has been growing rapidly over the years.

The big growth opportunities are:

Weight control
Fitness and Sports Nutrition
Food supplements

The market volume in the protein sector is continously growing and at the rate of US $ 10.5B in 2010 and according to experts, will steadily increase to approx. $25B until 2030.

“There is intense interest in algal biofuels and bioproducts in this country and abroad, including in US,Australia, Chile, China, the European Union, Japan, Korea, New Zealand, and others,” says Branka Kalle, President of Council Croatian Center of Renewable Energy Sources (CCRES).
Advantages algae has over other sources may make it the world’s favored biofuel. Algae could potentially produce over 20 times more oil per acre than other terrestrial crops.Algae avoids many of the environmental challenges associated with conventional biofuels.Algae does not require arable land or potable water, which completely avoids competition with food resources.
 “The Asia Pacific region has been culturing algae for food and pharmaceuticals for many centuries, and these countries are eager to use this knowledge base for the production of biofuels,”says Zeljko Serdar, President of CCRES.Without sustained high prices at the pump, investment in algae will likely be driven by demand for other products. In the short term, the growth of the industry will come from governments and companies seeking to reduce their environmental impact through carbon collection.

part of
Croatian Center of Renewable Energy Sources (CCRES)
Tagged , , , , , , , , , , , , , , , , , ,


Bazeni za uzgoj algi

Proizvodnja biogoriva iz algi

Ovisnost svijeta o neobnovljivim izvorima energije, uglavnom fosilnim gorivima, trn je u oku mnogih znanstvenika i aktivista za zaštitu okoliša diljem svijeta. Samim time ne iznenađuju globalna nastojanja da se smanji ovisnost o fosilnim gorivima i pronađu ekonomski prihvatljiva alternativna goriva i da se time znatno smanje emisije štetnog ugljičnog dioksida u atmosferu. Jedna od alternativa o kojoj se najviše priča su biogoriva. Biogoriva su zbog svoje sličnosti s naftnim derivatima poprilično dobra alternativa fosilnim gorivima i korištenje biogoriva rezultira s manjim emisijama CO2 u atmosferu. Zbog toga su biogoriva ekološki puno prihvatljivija od konkurentskih fosilnih goriva. Manje ukupne emisije ugljičnog dioksida iz biogoriva rezultat su zatvorenog ugljičnog kruga – biljke i alge uzimaju iz atmosfere ugljični dioksid da bi mogle rasti, a kad se biogoriva upotrebljavaju taj isti ugljični dioksid se vraća natrag u atmosferu. Ugljični otisak fosilnih goriva ide u samo jednom smjeru – iz zemlje u atmosferu, tj.u niti jednom koraku proizvodnje i korištenja fosilnih goriva ne smanjuje se količina CO2 u atmosferi.

Alge u laboratoriju Hrvatskog Centara Obnovljivih Izvora Energije (HCOIE)
Biogorivo može biti čvrsto, tekuće ili čak plinovito gorivo koje je proizvedeno iz biološkog materijala. Kod organizama koji obavljaju fotosintezu, kao na primjer kukuruz ili soja, biljke koriste energiju sunca i vodu da bi pretvorile dostupni ugljični dioksid u ugljikohidrate, tj. da bi pohranile energiju. Ovakav proces je zapravo dvostruko koristan: ne samo da je proizvedeno gorivo, nego je za to potrošena određena količina ugljičnog dioksida pa ovakva proizvodnja goriva ima pozitivni učinak i s energetske i s ekološke točke gledanja. Iako se biogoriva mogu proizvoditi od bilo kakvih izvora ugljika, danas se uglavnom koriste razne vrste ratarskih biljaka diljem svijeta. Postoji mala razlika između različitih biljaka u smislu goriva koje se od njih proizvodi. Na primjer etanol se proizvodi od biljaka koje sadrže puno šećera (šećerna trska, kukuruz), a za proizvodnju biodizela koriste se biljke koje sadrže više ulja (soja, kanola, uljana repica).
Biogoriva imaju mnoge prednosti, ali postoje i nedostaci. Uzgajanje biljaka za proizvodnju biogoriva zahtjeva kvalitetna poljoprivredna zemljišta a to naravno povećava potražnju za takvim zemljištima i diže cijenu. Najveći problem s biogorivima je zapravo činjenica da je proizvodnja biogoriva pretvaranje hrane u gorivo, a to loše utječe i na cijenu i na dostupnost hrane diljem svijeta, a već sad postoji gotovo milijarda ljudi koji žive na rubu gladi. Prema tome pretvaranje hrane u gorivo ne izgleda kao logičan izbor za rješavanje energetskih problema.
Prednosti korištenja algi za proizvodnju biogoriva 
Proizvodnja biogoriva iz algi ima mnoge prednosti koje taj postupak čine gotovo savršenim izvorom goriva. Alge rastu 50 do 100 puta brže od tradicionalnih kultura za proizvodnju biogoriva. Dodatna velika prednost je to što su alge jednostanični organizmi koji ne zahtijevaju svježu pitku i zemljište da bi rasli, a to znatno pojednostavnjuje proizvodnju. Prema nekim stručnjacima proizvodnja goriva iz algi je najbolja alternativa fosilnim gorivima i uz dobru podršku ta bi biogoriva u budućnosti mogla u potpunosti izbaciti fosilna goriva iz upotrebe.
Gdje se mogu uzgajati alge?
 Alge se mogu uzgajati u odvojenim vodenim površinama, čak iako voda nije dovoljno kvalitetna za piće. Alge se također mogu uzgajati i u slanoj vodi. Uzgajajući alge na površinama koje nisu pogodne za proizvodnju hrane, više zemljišta i kvalitetne vode ostaje za proizvodnju hrane. Veća količina proizvedene hrane može se onda upotrijebiti za borbu protiv gladi, a ne za proizvodnju biogoriva kao do sada. Odemo li tridesetak godina unatrag, ili da smo precizniji u 1978 godinu, možemo primijetiti da je čak i američko ministarstvo za energiju (Department of Energy – DOE) pokrenulo „Aquatic Species Program“ s ciljem istraživanja moguće proizvodnje energije i biogoriva iz algi. Prema tome, proizvodnja biogoriva iz algi nije nova ideja kao što misli većina ljudi. Usprkos dobroj ideji, ovo istraživanje nije bilo produktivno, uglavnom zbog padajućih cijena sirove nafte i činjenice da je DOE bilo prisiljeno smanjivati troškove. Sve ovo rezultiralo je gašenjem programa 1996 godine.
Usprkos gašenju, istraživanja unutar tog programa dala su vrlo važne rezultate, a najvažnije od svega je zaključak da bi proizvodnja biogoriva iz algi svakako mogla dostići željene razine. U ono doba studije su pokazale i jedan veliki nedostatak: zaključeno je da postupak ne bi bio financijski opravdan sve i da se cijena sirove nafte udvostruči. Ovaj zaključak imao je solidnu potporu sve do 2006 godine u kojoj se cijena nafte gotovo utrostručila u odnosu na prošlu dekadu, a cijena nafte je i dalje rasla. Uz trenutne probleme globalnog zatopljenja i visoke cijene sirove nafte stvorile su se idealne prilike za ponovnu evaluaciju ovog izvora energije.
Tehnologije za uzgoj algi (Algal Growth System)
Prozvodnja biogoriva u Hrvatskom Centru Obnovljivih Izvora Energije (HCOIE)
Proizvodnja biogoriva iz algi vrlo je zanimljivo područje istraživanja mnogim znanstvenicima diljem planeta, ja jedan on vodećih centara za takova istraživanja je laboratorij za pogone i konverziju energije (The Engines and Energy Conversion Laboratory – EECL) na sveučilištu Colorado State University. Ovaj laboratorij usmjeren je prema tehnologijama koje bi omogućile industrijska rješenja za energetske i ekološke izazove. Glavni projekt laboratorija fokusiran je na proizvodnju biogoriva iz algi i trebao bi rezultirati skalabilnom i cjenovno prihvatljivom tehnologijom za proizvodnju goriva. Jedan od glavnih igrača na tom polju svakako je tvrtka Solix Biofuels, kompanija koje je usavršila nekoliko generacija sustava za uzgoj algi (Algal Growth System – AGS), tehnologije koja je sad operativna na pokaznom polju Coyote Gulch u jugozapadnom Coloradu.
Tvrtka Solix Biofuels je vodeća u proizvodnju tehnologija za kreiranje iskoristive energije iz algi. Njihova tehnologija usmjerena je na omogućavanje velike komercijalizacije goriva temeljenih na mikroalgama i dodatnih koprodukata. Alge se mogu uzgajati na dva osnovna načina – sustav otvorenog bazena (prirodnog ili umjetno napravljenog) ili umjetni zatvoreni sustav. Alge moraju biti vrlo otporne na nametnike za uzgoj u otvorenim sustavima jer su to uvjeti koje nije lako kontrolirati.
Bez kontroliranih uvjeta teško je održavati rast željene vrste algi, odnosno održati rast na optimalnoj razini za proizvodnju biogoriva. Ovo je glavni razlog zašto Solix Biofuels uglavnom razvija zatvorene sustave za uzgoj algi. Zatvoreni sustavi imaju nekoliko prednosti: ne samo da zatvoreni sustavi omogućavaju uzgoj određene kulture, nego se alge u tim sustavima mogu direktno hraniti visoko koncentriranim ugljičnim dioksidom iz industrijskih procesa, a to naravno maksimizira količinu „ulovljenog“ ugljičnog dioksida koji bi inače bio ispušten u atmosferu. Prvi prototip AGS sustava napravljen je 2006 godine. Od onda kompanija radi na usavršavanju tehnologije i znatno je proširila površinu na kojima uzgaja alge. Posljednji veliki uspjeh dolazi iz srpnja 2009 kad su instalirali veliki sustav za proizvodnju biogoriva na pokaznom polju Coyote Gulch.
Što su zapravo postigli? 
Započeli su s velikim izazovom: prvo je trebalo razviti procese za skupljanje podataka i kontroliranje rasta ta automatizirani AGS. Željeli su jedinstvenu tehnološku platformu koja bi podržavala i prirodne i industrijske operacije. U prirodnim uvjetima sustav treba biti prilagodljiv pa je bilo potrebno mnogo kemijskih i fizičkih senzora te kontrola protoka. Za operacije u industrijskom okruženju glavni je naglasak bio na stabilnoj, pouzdanoj i jednostavnoj platformi koja ima sučelja prema industrijskoj instrumentaciji i kontrolama. Industrijska okruženja također moraju imati sustave skupljanja podataka u zajednički repozitorij da bi se informacije mogle jedinstveno prezentirati svim zainteresiranim stranama: menadžerima, operativi i odjelu za istraživanja i razvoj. Zbog toga je kreiran cijeli sustav za nadzor i skupljanje podataka (Supervisory Control and Data Acquisition) uključujući i sučelje za monitoriranje i kontrolu rasta algi.
Pokusna energana uključuje raznovrsne sustave izgrađene za proizvodnju plina i tokova vode, sam sustav za uzgoj algi, sustave za skupljanje algi i konačno sustave za proizvodnju biogoriva. Svi ovi sustavi omogućuju im vrlo precizno skupljanje podataka i ispitivanje odaziva različitih vrsta algi na različite uvjete uzgoja.
Alge u procesu HCOIE
Biogoriva temeljena na algama definitivno imaju potencijala pokrenuti revoluciju u energetskoj industriji i mogla bi igrati vodeću ulogu u borbi protiv stakleničkih plinova i klimatskih promjena. Naravno, da bi se došlo do toga morat će se pokrenuti još mnoga istraživanja i biti će potrebna znatna financijska sredstva. Kompanije poput Solix Biofuels su pioniri koji bi mogli pogurati ovaj energetski sektor u jedan od najkompetitivnijih na energetskom tržištu. Lobiji iza fosilnih goriva su još uvijek prejaki, ali s rastućim problemom globalnih klimatskih promjena ti lobiji bi uskoro mogli u određenoj mjeri oslabiti, čime bi se širom otvorila vrata alternativnim gorivima. Jedna od alternativa koja svakako zaslužuje pažnju u godinama koje dolaze su biogoriva iz algi. Njihov energetski potencijal, činjenica da ne pretvaramo hranu u gorivo i znatno smanjene ukupne emisije stakleničkih plinova trebali bi im osigurati dovoljna financijska sredstva za daljnja istraživanja.
Potražnja za energijom neće se smanjivati u godinama koje dolaze nego će rasti i biti će potrebna alternativna goriva bez obzira koliko će dominantna ostati fosilna goriva. Proizvodnja biogoriva iz algi mogla bi biti jedna od iznenađujućih takmaca na polju alternativnih goriva u ne tako dalekoj budućnosti, osobito ako cijene fosilnih goriva budu rasle. A u međuvremenu bi kompanije i udruženja poput američke Solix Biofuels ili hrvatskog HCOIE trebale nastaviti svoja istraživanja i ukazivati na prednosti koje ovakav proces ima. Ovime bi se svijest o toj alternativi znatno proširila i implementacija proizvodnje na globalnoj razini postala bi moguća kad za to dođe vrijeme.
Hrvatski Centar Obnovljivih Izvora Energije (HCOIE)
Tagged , , , , , , , , , , , , , , , , , , , ,


Algae are emerging to be one of the most promising long-term, sustainable sources of biomass and oils for fuel, food, feed, and other co-products. What makes them so attractive are the large number and wide variety of benefits associated with how and where they grow.

Nearly all these benefits stem from the fact that these plants have evolved over billions of years to produce and store energy in the form of oil, and they do this more efficiently than any other known natural or engineered process.

Here are 10 reasons why algae are a promising new source of fuel and other products:

1) Algae Grow Fast
Algae can double their numbers every few hours, can be harvested daily, and have the potential to produce a volume of biomass and biofuel many times greater than that of our most productive crops.

2) Algae Can Have High Biofuel Yields
Algae store energy in the form of oils and carbohydrates, which, combined with their high productivity, means they can produce from 2,000 to as many as 5,000 gallons of biofuels per acre per year.

3) Algae Consume CO2
Like any other plant, algae, when grown using sunlight, consume (or absorb) carbon dioxide (CO2) as they grow, releasing oxygen (O2) for the rest of us to breathe. For high productivity, algae require more CO2, which can be supplied by emissions sources such as power plants, ethanol facilities, and other sources.

4) Algae Do Not Compete With Agriculture
Algae cultivation uses both land that in many cases is unsuitable for traditional agriculture, as well as water sources that are not useable for other crops, such as sea-, brackish- and wastewater. As such, algae-based fuels complement biofuels made from traditional agricultural processes.

5) Microalgal Biomass Can Be Used for Fuel, Feed and Food
Microalgae can be cultivated to have a high protein and oil content, for example, which can be used to produce either biofuels or animal feeds, or both. In addition, microalgal biomass, which is rich in micronutrients, is already used for dietary supplements to advance human health.

6) Macroalgae Can Be Grown in the Sea
Macroalgae (seaweeds) are grown in the sea, or even on land with seawater, and their sugars can be converted into biofuels and chemicals.

7) Algae Can Purify Wastewaters
Algae thrive in nutrient-rich waters like municipal waste waters (sewage), animal wastes and some industrial effluents, at the same time purifying these wastes while producing a biomass suitable for biofuels production.

8) Algal Biomass Can Be Used as an Energy Source
After oil extraction, the remaining algal biomass can be dried and “pelletized” and used as fuel that is burned in industrial boilers and other power generation sources.

9) Algae Can Be Used to Produce Many Useful Products
Algae can be cultivated to produce a variety of products for large to small markets: plastics, chemical feedstocks, lubricants, fertilizers, and even cosmetics. See other products algae is used for here.

10) The Algae Industry is a Job Creation Engine
Algae can grow in a wide variety of climates in a multitude of production methods, from ponds to photobioreactors to fermenters, and thus will create a wide variety of jobs throughout the United States, from research to engineering, from construction to farming, from marketing to financial services.


Tagged , , , , , , , , , ,

Astaxanthin carotenoid

Astaxanthin carotenoid

photo by CCRES ALGAE Team
 Astaxanthin is found in microalgae, yeast, salmon, trout, krill, shrimp, crayfish, crustaceans, and the feathers of some birds. It provides the red color of salmon meat and the red color of cooked shellfish.
photo by CCRES ALGAE Team
Astaxanthin, unlike several carotenes and one other known carotenoid, is not converted to vitamin A (retinol) in the human body. Like other carotenoids, astaxanthin has self-limited absorption orally and such low toxicity by mouth that no toxic syndrome is known.
photo by CCRES ALGAE Team
 It is an antioxidant with a slightly lower antioxidant activity in some model systems than other carotenoids. However, in living organisms the free-radical terminating effectiveness of each carotenoid is heavily modified by its lipid solubility, and thus varies with the type of system being protected.

photo by CCRES ALGAE Team
While astaxanthin is a natural nutritional component, it can also be used as a food supplement. The supplement is intended for human, animal, and aquaculture consumption. The commercial production of astaxanthin comes from both natural and synthetic sources.
part of
Tagged , , , , , , , , , , , , , , , , , ,

Astaxanthin from Haematococcus pluvialis

Astaxanthin from Haematococcus pluvialis

President & CEO of CCRES
Astaxanthin, a member of the carotenoid family, it is a dark red pigment and the main carotenoid found in algae and aquatic animals. It is responsible for the red/pink coloration of crustaceans, shellfish, and the flesh of salmonoids. Algatechnologies produces astaxanthin from the microalga Haematococcus pluvialis, the richest known natural source for astaxanthin.
Astaxanthin however, is more than just a red pigment, it is primarily an extremely powerful antioxidant. It has the unique capacity to quench free radicals and reactive species of oxygen and to inhibit lipid peroxidation. Studies have shown astaxanthin to be over 500 times stronger than vitamin E and much more potent than other carotenoids such as lutein, lycopene and β-carotene.
Astaxanthin was found to have beneficial effects in many health conditions related to the Central Nervous System (CNS) disorders, skin health, joint health, muscle endurance, as well as to the cardiovascular, immune, eye and other systems.

Natural astaxanthin – molecule properties

Astaxanthin (3,3’-dihydroxy-β-β-carotene-4,4’-dione) is a xanthophyll  carotenoid,  commonly found in marine environments where it gives an orange-pink coloration to several sea-species.

CCRES  Haematococcus pluvialis
Astaxanthin has two chiral centers, at the 3 and 3′ positions. The main astaxanthin stereoisomer (3S, 3S’) found in the microalga Haematococcus pluvialis is the main form found in wild salmon.

CCRES  Haematococcus pluvialis
 Astaxanthin consists of geometric isomers (trans and cis). the cis isomers display higher bioavailability and potency in humans This isomer is abundant (up to 20%) in the natural astaxanthin complex produced by the microalga Haematococcus pluvialis.

CCRES  Haematococcus pluvialis

The astaxanthin in Haematococcus pluvialis microalgae occurs in the esterified form, which is more stable than the free astaxanthin form.

CCRES  Haematococcus pluvialis

Astaxanthin cannot be synthesized by animals and humans and must be provided in the diet. Natural astaxanthin has been part of the human diet for thousands of years.

CCRES  Haematococcus pluvialis

Astaxanthin, unlike most carotenes is not converted to vitamin A (retinol) in the human body.

CCRES  Haematococcus pluvialis

Natural astaxanthin has no “pro-oxidant” activity – It does not become an exhausted oxidant thanks to its unique molecule structure that is able to release the excess of energy as heat.

CCRES  Haematococcus pluvialis
 Astaxanthin has been shown to actually cross the blood-brain and blood-retina barriers, meaning it can positively impact disorders related to brain and the central nervous system.
part of
Tagged , , , , , , , , , , , , , , , , , , , , , , ,

CCRES Low Carbon Fuels in Aviation

 photo by CCRES


Biofuels are key to industry’s future

 In a bid to reduce its dependency on imported oil and tackle global warming, the EU has committed to raising the share of fuels from renewable sources in transport to 10% by 2020 – including biofuels, hydrogen and green electricity.
For the growing aviation industry, the switch to plant-based fuel is seen as not only environmentally smart, but a sensible financial move in an era or rising conventional fuel prices and worries about supply security.
Biofuel use in passenger aircraft is still a novelty, and industry officials are urging governments to help lift supplies, much as policies in the EU and United States have created a flourishing market in plant-based oils for motor vehicles.
The industry contends that sustainable fuels will reduce emissions even as passenger traffic grows. The airline sector has committed to meet 10% of its overall fuel consumption with biofuels by 2017 – though the goal is ambitious given that it is to account for just 1% by 2015…
Meanwhile, more doubts are being raised about the environmental benefits of biofuels.
The United Nations Environment Programme has warned that even though burning plant-based fuels can produce significantly lower levels of carbon emissions, production and land clearing to make way for new crops “may reduce carbon-savings or even lead to an increase.”
European conservation groups say the EU and European governments should wait to embrace aviation biofuels until there is proof of their environmental benefits.
 ”Given the right conditions, algae can double its volume overnight. Microalgae are the earth’s most productive plants –– 10 to 15 times more prolific in biomass than the fastest growing land plant exploited for biofuel production. While soy produces some 50 gallons of oil per acre per year; canola, 150 gallons; and palm, 650 gallons, algae can produce up to 15,000 gallons per acre per year. In addition, up to 50 percent (or more) of algae biomass (dry weight) is comprised of oil, whereas oil-palm trees—currently the most efficient large-scale source of feedstock oil to make biofuels—yield approximately 20 percent of their weight in oil,” says Zeljko Serdar, President of CCRES
 Airlines have committed to ramping up their use of biofuels in the belief that they can contribute to achieving the sector’s pledges on carbon-neutral growth. For 2050, the EU foresees 40% use of “sustainable low carbon fuels” in aviation.
Croatian Center of Renewable Energy Sources (CCRES)
Tagged , , , , , , , , , , , , , ,

News and Events by CCRES September 27, 2012

Croatian Center of Renewable Energy Sources

News and Events September 27, 2012

One of World’s Largest Wind Farms Starts Up in Oregon

Photo of wind turbines in a flat landscape.

The Shepherds Flat wind farm, one of the largest in the world, is now operating in Oregon.
Credit: Energy Department
Caithness Energy announced on September 22 that its Shepherds Flat Wind Farm in Oregon—one of the largest in the world—is now operational and generating up to 845 megawatts of electricity. The Energy Department supported the project with a $1.3 billion partial loan guarantee through the Recovery Act in 2010. The company said the project in the northeastern part of the state will generate enough electricity to power 235,000 U.S. homes.
Sponsored by Caithness and General Electric (GE) Energy Financial Services, the project consists of 338 GE 2.5xl turbines, which are being deployed for the first time in North America. The project’s output is contracted through 20-year power purchase agreements with Southern California Edison. The project will eliminate nearly1,216,000 tons of carbon dioxide per year, an amount equivalent to the annual greenhouse gas emissions from more than 212,000 passenger vehicles. See the Caithness press release and the October 13, 2010 edition of the Energy Efficiency and Renewable Energy newsletter.

USDA Announces $10 Million in Rural Smart Grid Funds

The U.S. Department of Agriculture (USDA) announced on September 20 the latest in a series of funding steps to modernize and improve the efficiency of rural electric generation and transmission systems. The agency will offer loan guarantees to support nearly $10 million in smart grid technologies.
One of the loan recipients is Nobles Cooperative Electric, which serves counties in southwestern Minnesota and northwestern Iowa. Their loan includes $850,000 in smart grid projects. The Gundy Electric Cooperative, Inc., which serves customers in Iowa and Missouri, has also been selected for a loan guarantee that includes over $700,000 in smart grid projects. Earlier this month, the USDA announced it had met its goal to finance $250 million in smart grid technologies in fiscal year 2012. See the USDA press release.
In 2009, the Energy Department released the first Smart Grid System Report, which examined smart grid deployment nationwide. The report noted that smart grids have the potential to dramatically change how we experience electricity in the country. See the July 22, 2009 edition of the Energy Efficiency and Renewable Energy Network News newsletter.

New York Brings Energy Efficient Technologies to Market

New York announced on September 17 the launch of a $30 million initiative to accelerate the commercialization of emerging, cutting-edge energy efficiency technologies. The Energy Efficiency Market Acceleration Program (EE-MAP) is being implemented by the New York Power Authority (NYPA). The new initiative will fund research, market development activities, and demonstration projects to help leverage investments and promote business development opportunities for emerging energy efficiency technologies.
The program will focus on accelerating the market development of energy efficiency technologies by speeding their deployment and training engineers, contractors, and maintenance service providers in designing and installing energy efficiency products, among other efforts. To support the initiative, NYPA has teamed with the New York State Energy Research and Development Authority and the Electric Power Research Institute, a nonprofit collaborative research organization, to catalog state-of-the-art energy efficiency products and services, identify commercial trends, and screen and track emerging technologies. See the New York press release.


  special thanks to U.S. Department of Energy |

Clean Energy in Our Community: Allegheny College and Meadville, Pennsylvania

In the third edition of DOE’s “Clean Energy in Our Community” video series, Allegheny College shows us that size doesn’t matter. Even with only 2,100 undergraduate students, Allegheny is successfully incorporating sustainability into its culture, operations, and curriculum—helping to grow the local green energy economy both on and off its Meadville, Pennsylvania, campus.
By working with students, faculty, staff, and local partners, the campus has created a composting facility that processes between 800-900 pounds of food, compostable paper, and plastic each day. The result is a soil-like, nutrient-rich material that helps to replenish the campus’s lawns, gardens, and flowerbeds without using chemical fertilizers.
The campus is well on its way to achieve its goal of climate neutrality by 2020. Earlier this year, Allegheny committed to purchasing 100% of its electricity from wind generated sources, a change that immediately eliminated over 50% of the institution’s carbon footprint. Through investments in energy audits and campus-wide energy retrofits, the campus is using Energy Star appliances and EPEAT certified computers to increase energy efficiency. In addition, all new construction on campus buildings will be LEED certified Silver, and historic buildings are in the process of becoming LEED certified. For the complete story, see the Energy Blog.

5 Questions about the SunShot Prize for Minh Le

Recently, we announced the launch of the SunShot Prize—a new competition aimed at making it faster, easier, and cheaper to install rooftop solar energy systems. Participating teams must demonstrate that solar energy is an affordable solution for American families and businesses. To learn more about the competition, we caught up with Minh Le, Acting Solar Program Manager at the Energy Department. In the Q&A exchange below, Le shares important details about the impetus driving this innovative competition.
Why did the Department launch the SunShot Prize?
The global clean energy race is moving forward at lightning speed, and it’s time for the United States to regain its competitive edge. The SunShot Prize is meant to inspire organizations across the nation to dramatically reduce the costs of going solar. As part of the SunShot Initiative’s larger effort to make solar cost-competitive by 2020, this new program takes aim at soft costs, which are essentially what we think of as “the price to plug in.” For the complete story, see the Energy Blog.

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , , , , , , , , , ,

News and Events by CCRES September 21, 2012

Croatian Center of Renewable Energy Sources

News and Events September 21, 2012

Energy Department Launches SunShot Prize Competition

Photo of workers installing photovoltaic panels on a house roof.

The SunShot Prize aims to decrease in the soft costs associated with small-scale solar energy systems by more than 65%.
Credit: MREA
As part of the Energy Department’s SunShot Initiative, the Department on September 12 announced the start of a new competition to make it faster, easier, and cheaper to install rooftop solar energy systems. The SunShot Prize makes a total of $10 million in cash awards available to the first three teams that consistently demonstrate that the non-hardware costs, or price to plug in, can be as low as $1 per watt (W) for small-scale photovoltaic (PV) systems installed on American homes and businesses. This target represents a decrease in the “soft costs” of solar energy systems—including permitting, licensing, connecting to the grid, and other non-hardware costs—by more than 65%. The winning teams will demonstrate that solar energy is an affordable solution for families and businesses in the United States.
The SunShot Prize is meant to inspire innovative, sustainable, and verifiable business practices that reduce soft costs to $1/W. Achieving this target will bring the SunShot goal of $0.60/W for residential system soft costs within reach by the end of the decade. During Phase I of the competition, winning teams will successfully deploy 5,000 small-scale (2–15 kilowatt) rooftop PV systems with non-hardware costs averaging $1/W. Phase II, which is intended to assess the business sustainability of the winning teams, calls for the installation of an additional 1,000 qualifying systems.
The competition will run through 2015.The first-place winner will receive $7 million, second place will receive $2 million, and third place will receive $1 million for successfully achieving the competition’s goals. In addition to the cash award, the first-place team will officially become “The Winner of America’s Most Affordable Rooftop Solar” prize. The SunShot Initiative is a collaborative national effort to make solar energy cost-competitive with other forms of energy by the end of the decade. See the Energy Department press release and SunShot Prize website.

First Ocean Energy Delivered to the U.S. Grid

Photo of a machine with rotating blades underwater.

ORPC’s TidGen power system, shown in this rendering, has begun delivering power to the grid from Cobscook Bay, Maine.
Credit: ORPC
The first grid-connected tidal power project in the United States project is now delivering electricity to the utility grid from an underwater power system in Cobscook Bay, Maine. Bangor Hydro Electric Company verified on September 13 that electricity generated by an underwater turbine generator is flowing to their power grid from Ocean Renewable Power Company’s (ORPC) Cobscook Bay Tidal Energy Project. The project is funded by a $10 million investment from the Energy Department, as well as the Maine Technology Institute and private investors.
The device, called a TidGen, is designed to operate in shallow tidal or deep river sites at depths of 50 to 100 feet , and has a peak output of 180 kilowatts. That amount is enough electricity to power 25 to 30 homes annually. In April, the Maine Public Utilities Commission approved a 20-year power purchase agreement for ORPC’s Maine Tidal Energy Project (which includes the Cobscook Bay Project) with three utilities: Central Maine Power, Bangor Hydro Electric, and Maine Public Service. Two additional TidGen devices will be installed at ORPC’s Cobscook Bay Project site in the fall of 2013, and together, the three-device power system will generate enough energy to power 75 to 100 homes. The devices connect directly to an onshore substation through a single underwater transmission line. See the ORPC press release Web page, the May 9 edition of EERE Network News, and the Energy Department Water Power Program website.

EPA Sets Biobased Diesel Volumes for 2013

The U.S. Environmental Protection Agency (EPA) on September 14 set the amount of bio-diesel products required to be included in diesel fuel markets in 2013 at 1.28 billion gallons. Biobased diesel products are advanced bio-fuels that are derived from sources such as vegetable oils and wastes oils from renewable sources.
The Energy Independence and Security Act of 2007 established the second phase of the Renewable Fuel Standards program that specifies a one billion-gallon minimum volume requirement for the biomass-based diesel category for 2012 and beyond. The law also calls on EPA to increase the volume requirements after consideration of environmental, market, and energy-related factors. See the EPA press release and the Renewable Fuels Standard Web page.

Solar Decathlon Europe 2012 is Underway

The Solar Decathlon Europe 2012, a complementary competition to the U.S. Department of Energy Solar Decathlon, which challenges collegiate teams to design, build, and operatre solar-powered houses that are cost-effective, energy-efficient, and attractive, began on September 14 in Madrid, Spain. Teams from 14 countries will participate in this year’s competition, coming from Brazil, China, Denmark, Egypt, France, Germany, Hungary, Italy, Japan, Netherlands, Norway, Romania, Spain, and the United Kingdom. In 2007, the Spanish Ministry of Housing signed an agreement to organize the event, and the first European gathering was in Madrid in 2010.
A combination of task completion, measurement, and jury scoring determined Solar Decathlon Europe’s first champion, Virginia Polytechnic Institute and State University. The event ends on September 30. See the Solar Decathlon Europe website.

Report Names Top 20 U.S. Corporate Solar Users

Walmart Stores Inc., Costco Wholesale, and Kohl’s Department Stores lead the top 20 U.S. companies in terms of on-site solar energy capacity, according to a report from the Solar Energy Industries Association (SEIA) and the Vote Solar Initiative. Combined, the top 20 corporate solar users’ photovoltaic (PV) installations, which total at least 279 megawatts, generate an estimated $47.3 million worth of electricity each year. SEIA and Vote Solar released the findings on September 12.
The amount of solar installed by the top 20 solar-powered companies could power more than 46,500 average U.S. homes. Altogether, U.S. commercial solar installations could power more than 390,000 American homes. The companies analyzed for this report have deployed more than 700 individual PV systems on their facilities in at least 25 states and Puerto Rico. Rounding out the list, in order, are IKEA, Macy’s, McGraw-Hill, Johnson & Johnson, Staples, Inc., Campbell’s Soup, Walgreens, Bed Bath & Beyond, Toys ‘R’ Us, General Motors, FedEx, White Rose Foods, Dow Jones, Snyder’s of Hanover, ProLogis, Hartz Mountain Industries, and Crayola. See the SEIA press release and the full report Web page.


  special thanks to U.S. Department of Energy |

Environmental Management Introduces the First LEED Gold Industrial Facility

Even though the Olympics have ended, the Office of Environmental Management is still setting its sights on gold. The Energy Department and contractor CH2M HILL Plateau Remediation Company achieved the first Leadership for Energy and Environmental Design (LEED) “gold” certification for sustainable design at the 200 West Pump and Treat system. This new groundwater treatment plant at Hanford Site in southeast Washington state is setting a new standard for environmental sustainability.
Established by the U.S. Green Building Council (USGBC) and verified by the Green Building Certification Institute, LEED is an internationally recognized green building certification system that rates buildings on criteria such as energy savings, water efficiency, carbon dioxide emissions reduction, and indoor air quality. Gold Certification is the second highest benchmark set by the USGBC for high-performance green buildings.
The building’s efficient design is expected to result in an energy cost savings of more than 70% over the life of the facility. Electric energy savings should amount to 317,470 kilowatt hours per year. That’s enough energy to power nearly 28 American households, according to U.S. Energy Information Administration estimates. For the complete story, see the Energy Blog.

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , ,