Human growth hormone (HGH) from algae

 

 

Rehovot, Israel-based Rosetta Green Ltd., which specializes in crop improvement for the agriculture and alternative fuel industries using unique genes called microRNAs, has successfully completed an experiment producing human growth hormone (HGH) and validated its biological activity. Proteins produced by both treated and control algae were tested with an in vitro activity test assay by an independent third party using the conventional proliferation method. The activity test assay found that Rosetta Green’s treated algae exhibited hormonal activity.

The project is part of a joint European effort to manufacture chemicals and proteins in algae, which is implemented and funded by the European Union as part of the European Commission’s Seventh Framework Program for Research and Technology Development (FP7). More than ten European organizations are participating in this project, including companies and leading universities, which has an estimated budget of about $7 million US. The project is being managed by Professor Sammy Boussiba of the Microalgal Biotechnology Laboratory of Ben Gurion University of the Negev.
Rosetta Green focuses on using microalgae to develop and produce human proteins for therapeutics, a process that reduces the currently steep drug production costs associated with using mostly mammalian cells and bacteria.

According to Amir Avniel, Rosetta Green’s CEO, “Algae may be an effective source for the production of proteins and vaccines. Rosetta Green has vast experience working with molecular methods in algae. The company worked on the development of designated algae in order to produce the protein in cooperation with the EU. Algae can be used for multiple applications such as producing chemicals, industrial food supplements, bio fuel and food. We believe that the technology that we develop provides significant advantage to improve various traits in plants and algae. We continually seek partners to develop our products and technologies.”

Growth hormone is a peptide hormone secreted by the pituitary gland. Among its functions are the regulation of protein production and the stimulation of bone growth in children. Growth hormone is normally secreted throughout a person’s life, but the amount decreases by 14% every decade after the age of 21. A deficiency in this hormone is known to cause growth block, short stature and dwarfism.

Currently, growth hormone is produced by major multi-nationals such as Pfizer, Lilly, and Merck Serono and used as a prescription medicine to treat children with growth problems and adults with hormone deficiency as well as other symptoms characterized by growth complications. Total annual sales of human growth hormone are estimated at approximately $3 Billion US.

Growth hormone is administered today primarily through daily injections over several years. The accumulated cost can reach hundreds of thousands of dollars per child. Rosetta Green believes that manufacturing the hormone using microalgae will likely reduce today’s high cost of production, which relies upon currently available techniques.

More info at http://www.rosettagreen.com/.

CCRES special thanks to Professor Sammy Boussiba of the Microalgal Biotechnology Laboratory of Ben Gurion University of the Negev.

 

CCRES ALGAE Project 

part of

Croatian Center of Renewable Energy Sources (CCRES)

Tagged , , , , , , , , , , , , , , , , , ,

2 thoughts on “Human growth hormone (HGH) from algae

  1. Thank you for the auspicious writeup. It in truth was a entertainment account it. Look complicated to more introduced agreeable from you! By the way, how could we communicate?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: